UniSKGRep: A unified representation learning framework of social network and knowledge graph

被引:8
|
作者
Shen, Yinghan [1 ,2 ]
Jiang, Xuhui [1 ,2 ]
Li, Zijian [1 ,2 ]
Wang, Yuanzhuo [1 ,3 ,6 ]
Xu, Chengjin [5 ]
Shen, Huawei [1 ,2 ]
Cheng, Xueqi [1 ,2 ,4 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, Data Intelligent Syst Res Ctr, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing, Peoples R China
[3] Zhongke Big Data Acad, Zhengzhou, Henan, Peoples R China
[4] Inst Comp Technol, Chinese Acad Sci, Key Lab Network data & Sci & Technol, Beijing, Peoples R China
[5] Int Digital Econ Acad, Shenzhen, Guangdong, Peoples R China
[6] 6 Kexueyuan South Rd Zhongguancun, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Social knowledge graph; Graph representation learning; Knowledge graph; Social network;
D O I
10.1016/j.neunet.2022.11.010
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The human-oriented applications aim to exploit behaviors of people, which impose challenges on user modeling of integrating social network (SN) with knowledge graph (KG), and jointly analyzing two types of graph data. However, existing graph representation learning methods merely represent one of two graphs alone, and hence are unable to comprehensively consider features of both SN and KG with profiling the correlation between them, resulting in unsatisfied performance in downstream tasks. Considering the diverse gap of features and the difficulty of associating of the two graph data, we introduce a Unified Social Knowledge Graph Representation learning framework (UniSKGRep), with the goal to leverage the multi-view information inherent in the SN and KG for improving the downstream tasks of user modeling. To the best of our knowledge, we are the first to present a unified representation learning framework for SN and KG. Concretely, the SN and KG are organized as the Social Knowledge Graph (SKG), a unified representation of SN and KG. For the representation learning of SKG, first, two separate encoders in the Intra-graph model capture both the social-view and knowledge-view in two embedding spaces, respectively. Then the Inter-graph model is learned to associate the two separate spaces via bridging the semantics of overlapping node pairs. In addition, the overlapping node enhancement module is designed to effectively align two spaces with the consideration of a relatively small number of overlapping nodes. The two spaces are gradually unified by continuously iterating the joint training procedure. Extensive experiments on two real-world SKG datasets have proved the effectiveness of UniSKGRep in yielding general and substantial performance improvement compared with the strong baselines in various downstream tasks.(c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页码:142 / 153
页数:12
相关论文
共 50 条
  • [41] Unified Representation Method for Multi-Source Information in Situation Awareness Knowledge Graph
    Li, Wei
    Li, Yuan
    Wang, Qinglin
    2024 14TH ASIAN CONTROL CONFERENCE, ASCC 2024, 2024, : 25 - 30
  • [42] A Graph Representation Learning Framework Predicting Potential Multivariate Interactions
    Yanlin Yang
    Zhonglin Ye
    Haixing Zhao
    Lei Meng
    International Journal of Computational Intelligence Systems, 16
  • [43] An End-to-End Multiplex Graph Neural Network for Graph Representation Learning
    Liang, Yanyan
    Zhang, Yanfeng
    Gao, Dechao
    Xu, Qian
    IEEE ACCESS, 2021, 9 : 58861 - 58869
  • [44] Preserving node similarity adversarial learning graph representation with graph neural network
    Yang, Shangying
    Zhang, Yinglong
    Jiawei, E.
    Xia, Xuewen
    Xu, Xing
    ENGINEERING REPORTS, 2024, 6 (10)
  • [45] Knowledge Graph Extrapolation Network with Transductive Learning for Recommendation
    Ma, Ruixin
    Guo, Fangqing
    Zhao, Liang
    Mei, Biao
    Bu, Xiya
    Wu, Hao
    Song, Enxin
    APPLIED SCIENCES-BASEL, 2022, 12 (10):
  • [46] Research on the Link Prediction Model of Dynamic Multiplex Social Network Based on Improved Graph Representation Learning
    Xia, Tianyu
    Gu, Yijun
    Yin, Dechun
    IEEE ACCESS, 2021, 9 : 412 - 420
  • [47] A Novel Logical Query Representation Learning Model on Knowledge Graph for Interpretable Knowledge Reasoning
    Wang, Yashen
    Zhang, Huanhuan
    PROCEEDINGS OF 2020 3RD INTERNATIONAL CONFERENCE ON UNMANNED SYSTEMS (ICUS), 2020, : 819 - 824
  • [48] Knowledge Graph Embedding with Direct and Disentangled Neighborhood Representation Attention Network
    Yu, Ruiguo
    Gao, Siyao
    Yu, Jian
    Zhao, Mankun
    Xu, Tianyi
    Gao, Jie
    Liu, Hongwei
    Li, Xuewei
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, 2022, 13368 : 281 - 294
  • [49] KCRec: Knowledge-aware representation Graph Convolutional Network for Recommendation
    Zhang, Lisa
    Kang, Zhe
    Sun, Xiaoxin
    Sun, Hong
    Zhang, Bangzuo
    Pu, Dongbing
    KNOWLEDGE-BASED SYSTEMS, 2021, 230
  • [50] Deep Network Embedding for Graph Representation Learning in Signed Networks
    Shen, Xiao
    Chung, Fu-Lai
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (04) : 1556 - 1568