UniSKGRep: A unified representation learning framework of social network and knowledge graph

被引:8
|
作者
Shen, Yinghan [1 ,2 ]
Jiang, Xuhui [1 ,2 ]
Li, Zijian [1 ,2 ]
Wang, Yuanzhuo [1 ,3 ,6 ]
Xu, Chengjin [5 ]
Shen, Huawei [1 ,2 ]
Cheng, Xueqi [1 ,2 ,4 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, Data Intelligent Syst Res Ctr, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing, Peoples R China
[3] Zhongke Big Data Acad, Zhengzhou, Henan, Peoples R China
[4] Inst Comp Technol, Chinese Acad Sci, Key Lab Network data & Sci & Technol, Beijing, Peoples R China
[5] Int Digital Econ Acad, Shenzhen, Guangdong, Peoples R China
[6] 6 Kexueyuan South Rd Zhongguancun, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Social knowledge graph; Graph representation learning; Knowledge graph; Social network;
D O I
10.1016/j.neunet.2022.11.010
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The human-oriented applications aim to exploit behaviors of people, which impose challenges on user modeling of integrating social network (SN) with knowledge graph (KG), and jointly analyzing two types of graph data. However, existing graph representation learning methods merely represent one of two graphs alone, and hence are unable to comprehensively consider features of both SN and KG with profiling the correlation between them, resulting in unsatisfied performance in downstream tasks. Considering the diverse gap of features and the difficulty of associating of the two graph data, we introduce a Unified Social Knowledge Graph Representation learning framework (UniSKGRep), with the goal to leverage the multi-view information inherent in the SN and KG for improving the downstream tasks of user modeling. To the best of our knowledge, we are the first to present a unified representation learning framework for SN and KG. Concretely, the SN and KG are organized as the Social Knowledge Graph (SKG), a unified representation of SN and KG. For the representation learning of SKG, first, two separate encoders in the Intra-graph model capture both the social-view and knowledge-view in two embedding spaces, respectively. Then the Inter-graph model is learned to associate the two separate spaces via bridging the semantics of overlapping node pairs. In addition, the overlapping node enhancement module is designed to effectively align two spaces with the consideration of a relatively small number of overlapping nodes. The two spaces are gradually unified by continuously iterating the joint training procedure. Extensive experiments on two real-world SKG datasets have proved the effectiveness of UniSKGRep in yielding general and substantial performance improvement compared with the strong baselines in various downstream tasks.(c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页码:142 / 153
页数:12
相关论文
共 50 条
  • [31] Graph representation learning via simple jumping knowledge networks
    Fei Yang
    Huyin Zhang
    Shiming Tao
    Sheng Hao
    Applied Intelligence, 2022, 52 : 11324 - 11342
  • [32] Survey on Representation Learning Methods of Knowledge Graph for Link Prediction
    Du X.-Y.
    Liu M.-W.
    Shen L.-W.
    Peng X.
    Ruan Jian Xue Bao/Journal of Software, 2024, 35 (01): : 87 - 117
  • [33] Hybrid Approach for Accurate and Interpretable Representation Learning of Knowledge Graph
    Yogendran, Nivetha
    Kanagarajah, Abivarshi
    Chandiran, Kularajini
    Thayasivam, Uthayasanker
    MERCON 2020: 6TH INTERNATIONAL MULTIDISCIPLINARY MORATUWA ENGINEERING RESEARCH CONFERENCE (MERCON), 2020, : 650 - 655
  • [34] CosUKG: A Representation Learning Framework for Uncertain Knowledge Graphs
    Shen, Qiuhui
    Qu, Aiyan
    MATHEMATICS, 2024, 12 (10)
  • [35] Knowledge Graph Augmented Network Towards Multiview Representation Learning for Aspect-Based Sentiment Analysis
    Zhong Q.
    Ding L.
    Liu J.
    Du B.
    Jin H.
    Tao D.
    IEEE Transactions on Knowledge and Data Engineering, 2023, 35 (10) : 10098 - 10111
  • [36] A Graph Representation Learning Framework Predicting Potential Multivariate Interactions
    Yang, Yanlin
    Ye, Zhonglin
    Zhao, Haixing
    Meng, Lei
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2023, 16 (01)
  • [37] FairMILE: Towards an Efficient Framework for Fair Graph Representation Learning
    He, Yuntian
    Gurukar, Saket
    Parthasarathy, Srinivasan
    PROCEEDINGS OF 2023 ACM CONFERENCE ON EQUITY AND ACCESS IN ALGORITHMS, MECHANISMS, AND OPTIMIZATION, EAAMO 2023, 2023,
  • [38] KRL_Match: knowledge graph objects matching for knowledge representation learning
    Xinhua Suo
    Bing Guo
    Yan Shen
    Shengxin Dai
    Wei Wang
    Yaosen Chen
    Zhen Zhang
    Knowledge and Information Systems, 2023, 65 : 641 - 681
  • [39] KRL_Match: knowledge graph objects matching for knowledge representation learning
    Suo, Xinhua
    Guo, Bing
    Shen, Yan
    Dai, Shengxin
    Wang, Wei
    Chen, Yaosen
    Zhang, Zhen
    KNOWLEDGE AND INFORMATION SYSTEMS, 2023, 65 (02) : 641 - 681
  • [40] Knowledge structure enhanced graph representation learning model for attentive knowledge tracing
    Gan, Wenbin
    Sun, Yuan
    Sun, Yi
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (03) : 2012 - 2045