Temporal dynamics of stress response in Halomonas elongata to NaCl shock: physiological, metabolomic, and transcriptomic insights

被引:5
|
作者
Yu, Junxiong [1 ]
Zhang, Yue [1 ]
Liu, Hao [1 ]
Liu, Yuxuan [2 ]
Mohsin, Ali [1 ]
Liu, Zebo [1 ]
Zheng, Yanning [3 ]
Xing, Jianmin [4 ]
Han, Jing [3 ]
Zhuang, Yingping [1 ]
Guo, Meijin [1 ]
Wang, Zejian [1 ]
机构
[1] East China Univ Sci & Technol, State Key Lab Bioreactor Engn, 130 Meilong Rd, Shanghai 200237, Peoples R China
[2] East China Univ Sci & Technol, Dept Chem Engn Energy Resources, 130 Meilong Rd, Shanghai 200237, Peoples R China
[3] Chinese Acad Sci, Inst Microbiol, State Key Lab Microbial Resources, 1 Beichen West Rd,Chaoyang Dist, Beijing 100101, Peoples R China
[4] Chinese Acad Sci, Inst Proc Engn, Beijing 100190, Peoples R China
关键词
Halomonas elongata; Ectoine; NaCl shock; Stress response; Osmotic stress; Oxidative stress; OXIDATIVE STRESS; BACILLUS-SUBTILIS; OSMOREGULATION; POTASSIUM; MECHANISM;
D O I
10.1186/s12934-024-02358-5
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background The halophilic bacterium Halomonas elongata is an industrially important strain for ectoine production, with high value and intense research focus. While existing studies primarily delve into the adaptive mechanisms of this bacterium under fixed salt concentrations, there is a notable dearth of attention regarding its response to fluctuating saline environments. Consequently, the stress response of H. elongata to salt shock remains inadequately understood. Results This study investigated the stress response mechanism of H. elongata when exposed to NaCl shock at short- and long-time scales. Results showed that NaCl shock induced two major stresses, namely osmotic stress and oxidative stress. In response to the former, within the cell's tolerable range (1-8% NaCl shock), H. elongata urgently balanced the surging osmotic pressure by uptaking sodium and potassium ions and augmenting intracellular amino acid pools, particularly glutamate and glutamine. However, ectoine content started to increase until 20 min post-shock, rapidly becoming the dominant osmoprotectant, and reaching the maximum productivity (1450 +/- 99 mg/L/h). Transcriptomic data also confirmed the delayed response in ectoine biosynthesis, and we speculate that this might be attributed to an intracellular energy crisis caused by NaCl shock. In response to oxidative stress, transcription factor cysB was significantly upregulated, positively regulating the sulfur metabolism and cysteine biosynthesis. Furthermore, the upregulation of the crucial peroxidase gene (HELO_RS18165) and the simultaneous enhancement of peroxidase (POD) and catalase (CAT) activities collectively constitute the antioxidant defense in H. elongata following shock. When exceeding the tolerance threshold of H. elongata (1-13% NaCl shock), the sustained compromised energy status, resulting from the pronounced inhibition of the respiratory chain and ATP synthase, may be a crucial factor leading to the stagnation of both cell growth and ectoine biosynthesis. Conclusions This study conducted a comprehensive analysis of H. elongata's stress response to NaCl shock at multiple scales. It extends the understanding of stress response of halophilic bacteria to NaCl shock and provides promising theoretical insights to guide future improvements in optimizing industrial ectoine production.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Transcriptomic insights into the heat stress response of Dunaliella bardawil
    Liang, Ming-Hua
    Jiang, Jian-Guo
    Wang, Ling
    Zhu, Jianhua
    ENZYME AND MICROBIAL TECHNOLOGY, 2020, 132
  • [32] Mechanistic insights into the transcriptomic and metabolomic responses of Curcuma wenyujin under high phosphorus stress
    Liu, Yu
    Wang, Chen
    Xu, Wenqing
    Fan, Ruike
    Wu, Zhigang
    Dai, Lishang
    BMC PLANT BIOLOGY, 2025, 25 (01):
  • [33] Analysis of the Antioxidant Mechanism of Tamarix ramosissima Roots under NaCl Stress Based on Physiology, Transcriptomic and Metabolomic
    Chen, Yahui
    Li, Haijia
    Zhang, Shiyang
    Du, Shanfeng
    Wang, Guangyu
    Zhang, Jinchi
    Jiang, Jiang
    ANTIOXIDANTS, 2022, 11 (12)
  • [34] Combined metabolomic and transcriptomic analysis to reveal the response of rice to Mn toxicity stress
    Li, Feng
    Yao, Yushuang
    Ma, Jiapeng
    Wu, Zhengwei
    Zheng, Dianfeng
    Xue, Yingbin
    Liu, Ying
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2025, 289
  • [35] Transcriptomic and physiological analyses of Miscanthus lutarioriparius in response to plumbum stress
    Wang, Jia
    Duan, Xuchu
    Wang, Yaozhou
    Sheng, Jiajing
    INDUSTRIAL CROPS AND PRODUCTS, 2022, 176
  • [36] Metabolomic and Transcriptomic Analysis of Response Mechanism of Baker's Yeast to Freezing Stress
    Meng L.
    Liu H.
    Liu Y.
    Lin X.
    Liu S.
    Li C.
    Shipin Kexue/Food Science, 2021, 42 (10): : 193 - 200
  • [37] Combined transcriptomic and metabolomic analyses of high temperature stress response of quinoa seedlings
    Xie, Heng
    Zhang, Ping
    Jiang, Chunhe
    Wang, Qianchao
    Guo, Yirui
    Zhang, Xuesong
    Huang, Tingzhi
    Liu, Junna
    Li, Li
    Li, Hanxue
    Wang, Hongxin
    Qin, Peng
    BMC PLANT BIOLOGY, 2023, 23 (01)
  • [38] Combined transcriptomic and metabolomic analyses of high temperature stress response of quinoa seedlings
    Heng Xie
    Ping Zhang
    Chunhe Jiang
    Qianchao Wang
    Yirui Guo
    Xuesong Zhang
    Tingzhi Huang
    Junna Liu
    Li Li
    Hanxue Li
    Hongxin Wang
    Peng Qin
    BMC Plant Biology, 23
  • [39] Integrated transcriptomic and metabolomic analysis the variation of rice cultivars response to arsenite stress
    Ma, Li
    Zeng, Jin
    Zhang, Rui qi
    Wang, Lin
    Zhang, Fawen
    Zhao, Xuejin
    Yuan, Yuan
    Li, Limei
    ENVIRONMENTAL TECHNOLOGY & INNOVATION, 2023, 31
  • [40] Transcriptomic and Metabolomic Analyses Reveal the Response Mechanism of Ophiopogon japonicus to Waterlogging Stress
    Cheng, Tingting
    Zhou, Xia
    Lin, Juan
    Zhou, Xianjian
    Wang, Hongsu
    Chen, Tiezhu
    BIOLOGY-BASEL, 2024, 13 (03):