Comparative analysis of methane conversion: pyrolysis, dry and steam thermal plasma reforming

被引:3
作者
Essiptchouk, Alexei [1 ,2 ]
Miranda, Felipe [2 ]
Petraconi, Gilberto [2 ]
机构
[1] Sao Paulo State Univ UNESP, Inst Sci & Technol, Dept Environm Engn, BR-12247004 Sao Jose Dos Campos, Brazil
[2] Technol Inst Aeronaut ITA DCTA, Plasma & Proc Lab LPP, BR-12228900 Sao Jose Dos Campos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
energy conversion efficiency; reforming of methane; clean hydrogen; thermal plasma; thermodynamic equilibrium; CARBON-DIOXIDE; HYDROGEN; KINETICS;
D O I
10.1088/1361-6463/ad31e7
中图分类号
O59 [应用物理学];
学科分类号
摘要
Methane reforming is gaining attention because of its potential to be converted into energy-dense fuels or high-value chemicals. In addition to the production of syngas (H2+CO), the utilization of CO2 can help reduce greenhouse gases. Water steam is typically used to increase the output of H2. This study evaluated the potential of thermal plasma technology to produce clean hydrogen, carbon monoxide, and carbon black from methane by applying a thermodynamic equilibrium model. A comparative analysis of three cases of methane processing (pyrolysis, dry reforming, and steam reforming) is presented to provide a comprehensive understanding of the potential of thermal plasma technology for methane conversion.
引用
收藏
页数:14
相关论文
共 40 条
[1]   METHANE STEAM REFORMING KINETICS FOR SOLID OXIDE FUEL-CELLS [J].
ACHENBACH, E ;
RIENSCHE, E .
JOURNAL OF POWER SOURCES, 1994, 52 (02) :283-288
[2]   Plasma-Chemical Production of Acetylene from Hydrocarbons: History and Current Status (A Review) [J].
Bilera, I., V ;
Lebedev, Yu A. .
PETROLEUM CHEMISTRY, 2022, 62 (04) :329-351
[3]   The 2020 plasma catalysis roadmap [J].
Bogaerts, Annemie ;
Tu, Xin ;
Whitehead, J. Christopher ;
Centi, Gabriele ;
Lefferts, Leon ;
Guaitella, Olivier ;
Azzolina-Jury, Federico ;
Kim, Hyun-Ha ;
Murphy, Anthony B. ;
Schneider, William F. ;
Nozaki, Tomohiro ;
Hicks, Jason C. ;
Rousseau, Antoine ;
Thevenet, Frederic ;
Khacef, Ahmed ;
Carreon, Maria .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2020, 53 (44)
[4]   Plasma catalytic reforming of methane [J].
Bromberg, L ;
Cohn, DR ;
Rabinovich, A ;
Alexeev, N .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1999, 24 (12) :1131-1137
[5]   A combined thermo-kinetic analysis of various methane reforming technologies: Comparison with dry reforming [J].
Challiwala, M. S. ;
Ghouri, M. M. ;
Linke, P. ;
El-Halwagi, M. M. ;
Elbashir, N. O. .
JOURNAL OF CO2 UTILIZATION, 2017, 17 :99-111
[6]  
Chase M. W., 1998, J. Phys. Chem. Ref. Data, Monograph, V9
[7]  
chem.msu, Database IVTANTERMO
[8]   Electrically assisted conversion of carbon dioxide into synthesis gas [J].
Czernichowski, A .
GREENHOUSE GAS CONTROL TECHNOLOGIES, 1999, :439-443
[9]   A Comprehensive Review on Recent Advancements in Thermochemical Processes for Clean Hydrogen Production to Decarbonize the Energy Sector [J].
Das, Arnob ;
Peu, Susmita Datta .
SUSTAINABILITY, 2022, 14 (18)
[10]   Review and evaluation of hydrogen production methods for better sustainability [J].
Dincer, Ibrahim ;
Acar, Canan .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (34) :11094-11111