Orthogonal Translation for Site-Specific Installation of Post-translational Modifications

被引:9
|
作者
Gan, Qinglei [1 ]
Fan, Chenguang [1 ,2 ]
机构
[1] Univ Arkansas, Dept Chem & Biochem, Fayetteville, AR 72701 USA
[2] Univ Arkansas, Cell & Mol Biol Program, Fayetteville, AR 72701 USA
基金
美国国家卫生研究院;
关键词
GENETIC-CODE EXPANSION; AMINOACYL-TRANSFER-RNA; PROTEIN ARGININE METHYLATION; TYROSINE-SULFATED PROTEINS; N-EPSILON-ACETYLLYSINE; IN-VITRO TRANSLATION; L-THREONINE KINASE; ESCHERICHIA-COLI; CHEMICAL BIOLOGY; LYSINE METHYLATION;
D O I
10.1021/acs.chemrev.3c00850
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Post-translational modifications (PTMs) endow proteins with new properties to respond to environmental changes or growth needs. With the development of advanced proteomics techniques, hundreds of distinct types of PTMs have been observed in a wide range of proteins from bacteria, archaea, and eukarya. To identify the roles of these PTMs, scientists have applied various approaches. However, high dynamics, low stoichiometry, and crosstalk between PTMs make it almost impossible to obtain homogeneously modified proteins for characterization of the site-specific effect of individual PTM on target proteins. To solve this problem, the genetic code expansion (GCE) strategy has been introduced into the field of PTM studies. Instead of modifying proteins after translation, GCE incorporates modified amino acids into proteins during translation, thus generating site-specifically modified proteins at target positions. In this review, we summarize the development of GCE systems for orthogonal translation for site-specific installation of PTMs.
引用
收藏
页码:2805 / 2838
页数:34
相关论文
共 50 条
  • [31] Proteomics attack on post-translational modifications
    Delcourt, Nicolas
    M S-MEDECINE SCIENCES, 2007, 23 (02): : 219 - 220
  • [32] POST-TRANSLATIONAL MODIFICATIONS OF RICE LECTIN
    STINISSEN, HM
    PEUMANS, WJ
    CARLIER, AR
    ARCHIVES INTERNATIONALES DE PHYSIOLOGIE DE BIOCHIMIE ET DE BIOPHYSIQUE, 1982, 90 (04): : B216 - B217
  • [33] Post-translational Modifications of Opioid Receptors
    Duarte, Mariana Lemos
    Devi, Lakshmi A.
    TRENDS IN NEUROSCIENCES, 2020, 43 (06) : 417 - 432
  • [34] Post-translational modifications in prion diseases
    Bizingre, Chloe
    Bianchi, Clara
    Baudry, Anne
    Alleaume-Butaux, Aurelie
    Schneider, Benoit
    Pietri, Mathea
    FRONTIERS IN MOLECULAR NEUROSCIENCE, 2024, 17
  • [35] Tubulin post-translational modifications in meiosis
    Akera, Takashi
    SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2023, 137 : 38 - 45
  • [36] Proteomic analysis of post-translational modifications
    Matthias Mann
    Ole N. Jensen
    Nature Biotechnology, 2003, 21 : 255 - 261
  • [37] Post-translational protein modifications in schizophrenia
    Toni M. Mueller
    James H. Meador-Woodruff
    npj Schizophrenia, 6
  • [38] Sirtuin Oxidative Post-translational Modifications
    Kalous, Kelsey S.
    Wynia-Smith, Sarah L.
    Smith, Brian C.
    FRONTIERS IN PHYSIOLOGY, 2021, 12
  • [39] Post-translational modifications of nuclear sirtuins
    Kaiqiang Zhao
    Zhongjun Zhou
    Genome Instability & Disease, 2020, 1 (1) : 34 - 45
  • [40] Proteomic analysis of post-translational modifications
    Mann, M
    Jensen, ON
    NATURE BIOTECHNOLOGY, 2003, 21 (03) : 255 - 261