Removal of methylene blue azo dye from aqueous solution using biosorbent developed from floral waste

被引:1
作者
Agarwal, S. [1 ]
Rana, N. [1 ]
Bhardwaj, P. [1 ]
Tiwari, G. N. [2 ]
Yadav, A. K. [3 ]
Garg, M. C. [1 ]
Mathur, A. [4 ]
Tripathi, A. [5 ]
机构
[1] Amity Univ, Amity Inst Environm Sci, Noida 201301, India
[2] Cent Univ, Nagaland Univ, Dept Teacher Educ, Kohima Campus, Meriema 797004, India
[3] Shri Mata Vaishno Devi Univ, Sch Biotechnol, Katra 182320, India
[4] UPES, Dept Phys, Dehra Dun 248007, India
[5] Nagaland Univ, Dept Environm Sci, Hqrs Lumami 798627, Zunheboto, India
关键词
Activated carbon; Azo dye; Bioremediation; Biochar; Floral waste; Methylene blue; ACTIVATED CARBONS; MALACHITE GREEN; ACID ACTIVATION; IONS REMOVAL; ADSORPTION; WATER; ADSORBENT; FLOWER; PERFORMANCE; BIOCHAR;
D O I
10.22438/jeb/45/1/MRN-5121
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Aim: The present study was carried out to prepare biosorbent from temple floral waste (Tagetes erecta) by pyrolysis and chemical activation method for removal of methylene blue dye from aqueous solution. Methodology: Floral waste of Tagetes erecta collected from the temples were segregated, washed and dried to form biochar by direct pyrolysis and chemical activation method. Followed by physio-chemical analysis of biosorbents the most efficient biochar was selected for the removal of methylene blue dye from aqueous solution. The adsorbent efficiency and percentage removal of methylene blue dye was studied using various doses of biochar (10, 20, 30, 40, 50, 60, and 70 mg 100 ml (-1)), effect of pH (2.0 to 4.0, 6.0 to 8.0, and 10.0 to-1 12.0) and effect of contact time etc. Results: The comparative physio-chemical analysis of the bio chars suggested that the activated charcoal made from temple flower waste by the direct pyrolysis method showed better performance, with its low moisture content (5.3%), low ash content (4.3%), higher yield, larger surface area, and higher porosity (65.3%) as compared to the biochar obtained from chemical activation. The percent adsorption significantly increased (p<0.05) from 76% to 87.0% on increasing biochar dose from 10.0 to 70.0 mg 100 ml(-1). On increasing the pH of the solution from 4.0 to 6.0, Methylene blue removal significantly increased (p<0.05) from 88.0% to 91.0%. Interpretation: It is possible to manage floral waste from temples in a sustainable and environmentally responsible manner by converting it into biochar and using it for the treatment of waste water in order to eliminate hazardous dyes.
引用
收藏
页码:54 / 61
页数:8
相关论文
共 50 条
  • [41] Removal of methylene blue from aqueous solution using wine-processing waste sludge
    Liu, Cheng-Chung
    Li, Yuan-Shen
    Chen, Yue-Ming
    Li, Hsuan-Hua
    Wang, Ming-Kuang
    WATER SCIENCE AND TECHNOLOGY, 2012, 65 (12) : 2191 - 2199
  • [42] Removal of methylene blue from aqueous solution by biochar derived from rice husk
    Buil, Huyen Thuong
    Leo, Phuong Thu
    Nguyen, Thu Phuong
    Lel, Duy Ngoc
    Vol, Dieu Linh
    Phaml, Le Anh
    Nguyenl, Luong Lam
    Nguyen, Thi Hue
    Le, Tuan Vinh
    Huongl, Mai
    Dinhr, Thi Mai Thanh
    Herrmann, Marine
    Ouillon, Sylvain
    Duong, Thi Thuy
    Le, Thi Phuong Quynh
    VIETNAM JOURNAL OF EARTH SCIENCES, 2022, 44 (02): : 273 - 285
  • [43] Removal of Methylene Blue from Aqueous Solution by Coffee Residues
    Nitayaphat, Walaikorn
    Jintakosol, Thanut
    Engkaseth, Kamontip
    Wanrakakit, Yada
    CHIANG MAI JOURNAL OF SCIENCE, 2015, 42 (02): : 407 - 416
  • [44] Removal of methylene blue from aqueous solution by ryegrass straw
    da Silva, E. O.
    dos Santos, V. D.
    de Araujo, E. B.
    Guterres, F. P.
    Zottis, R.
    Flores, W. H.
    de Almeida, A. R. F.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2020, 17 (08) : 3723 - 3740
  • [45] Removal of Methylene Blue from Aqueous Solution Using Cotton Stalk: As a Bioadsorbent
    Ertas, Murat
    Acemioglu, Bilal
    Alma, M. Hakki
    Usta, Mustafa
    SURVIVAL AND SUSTAINABILITY: ENVIRONMENTAL CONCERNS IN THE 21ST CENTURY, 2011, : 899 - 906
  • [46] Waste to resource recovery: mesoporous adsorbent from orange peel for the removal of trypan blue dye from aqueous solution
    Eddy, Nnabuk Okon
    Garg, Rajni
    Garg, Rishav
    Aikoye, Augustine O.
    Ita, Benedict I.
    BIOMASS CONVERSION AND BIOREFINERY, 2023, 13 (15) : 13493 - 13511
  • [47] Removal of methylene blue dye from water by a spent bleaching earth biosorbent
    Belhaine, Ali
    Ghezzar, Mouffok Redouane
    Abdelmalek, Fatiha
    Tayebi, Kamel
    Ghomari, Abdelhamid
    Addou, Ahmed
    WATER SCIENCE AND TECHNOLOGY, 2016, 74 (11) : 2534 - 2540
  • [48] Removal of Methylene Blue dye from aqueous solutions by illite clay
    Ozmetin, Elif
    Kocakerim, Mehmet Muhtar
    DESALINATION AND WATER TREATMENT, 2018, 124 : 279 - 286
  • [49] APPLICATION OF BIOWASTE (WASTE GENERATED IN BIODIESEL PLANT) AS AN ADSORBENT FOR THE REMOVAL OF HAZARDOUS DYE - METHYLENE BLUE - FROM AQUEOUS PHASE
    Gottipati, R.
    Mishra, S.
    BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING, 2010, 27 (02) : 357 - 367
  • [50] EXFOLIATION OF NANOGRAPHENE FROM WASTE BATTERIES AND ITS APPLICATION IN METHYLENE BLUE DYE REMOVAL
    Bogeshwaran, K.
    Kumar, K. Sathish
    Karunanithi, B.
    Srividhya, M.
    Gowri, G.
    JOURNAL OF THE CHILEAN CHEMICAL SOCIETY, 2021, 66 (04): : 5358 - 5364