An improved multiphase lattice Boltzmann flux solver with a modified Cahn-Hilliard equation for multiphase flow with super large density ratio

被引:8
作者
Zhang, Da [1 ,2 ]
Li, Yan [1 ]
Wang, Yan [3 ]
Shu, Chang [2 ]
机构
[1] Ocean Univ China, Coll Engn, Mech Engn, Qingdao 266100, Peoples R China
[2] Natl Univ Singapore, Dept Mech Engn, 10 Kent Ridge Crescent, Singapore 119260, Singapore
[3] Nanjing Univ Aeronaut & Astronaut, State Key Lab Mech & Control Mech Struct, Yudao St 29, Nanjing 210016, Jiangsu, Peoples R China
关键词
RELATIVE PERMEABILITY; LEVEL SET; SIMULATION; MODEL;
D O I
10.1063/5.0189032
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this study, a modified Cahn-Hilliard equation with a very simple format was proposed, which can be used to simulate immiscible multi-component/multiphase flow with a super large density ratio. In addition, based on this modified equation and the Navier-Stokes equations, an improved multiphase lattice Boltzmann flux solver (IMLBFS) has been proposed, and its computational ability has been tested by multiple numerical examples, including Laplace law, two bubbles merging, contact angle, bubble rising, and droplet splashing on a thin film. The results show that the proposed IMLBFS can simulate immiscible two-phase flow with a very large density ratio up to 1:5000 or 1:10 000 under various operating conditions, including the Reynolds number reaching 10 000. In addition, IMLBFS also has excellent features such as clear physical properties, freely adjustable source term strength, and effective suppression of mass loss.
引用
收藏
页数:13
相关论文
共 38 条
[11]   Calculation of two-phase Navier-Stokes flows using phase-field modeling [J].
Jacqmin, D .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 155 (01) :96-127
[12]   COMPACT FINITE-DIFFERENCE SCHEMES WITH SPECTRAL-LIKE RESOLUTION [J].
LELE, SK .
JOURNAL OF COMPUTATIONAL PHYSICS, 1992, 103 (01) :16-42
[13]   An interfacial lattice Boltzmann flux solver for simulation of multiphase flows at large density ratio [J].
Li, You ;
Niu, Xiao-Dong ;
Wang, Yan ;
Khan, Adnan ;
Li, Qiao-Zhong .
INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2019, 116 :100-112
[14]   Lattice Boltzmann method for fractional Cahn-Hilliard equation [J].
Liang, Hong ;
Zhang, Chunhua ;
Du, Rui ;
Wei, Yikun .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 91
[15]   An implicit high-order radial basis function-based differential quadrature-finite volume method on unstructured grids to simulate incompressible flows with heat transfer [J].
Liu, Y. Y. ;
Yang, L. M. ;
Shu, C. ;
Zhang, Z. L. ;
Yuan, Z. Y. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 467
[16]   A high order least square-based finite difference-finite volume method with lattice Boltzmann flux solver for simulation of incompressible flows on unstructured grids [J].
Liu, Y. Y. ;
Shu, C. ;
Zhang, H. W. ;
Yang, L. M. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 401 (401)
[17]   A mixed formulation of proper generalized decomposition for solving the Allen-Cahn and Cahn-Hilliard equations [J].
Ma, Weixin ;
Shen, Yongxing .
FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2021, 194
[18]  
NIST, Chemistry WebBook
[19]   Extended lattice Boltzmann method for numerical simulation of thermal phase change in two-phase fluid flow [J].
Safari, Hesameddin ;
Rahimian, Mohammad Hassan ;
Krafczyk, Manfred .
PHYSICAL REVIEW E, 2013, 88 (01)
[20]   A PHASE-FIELD MODEL AND ITS NUMERICAL APPROXIMATION FOR TWO-PHASE INCOMPRESSIBLE FLOWS WITH DIFFERENT DENSITIES AND VISCOSITIES [J].
Shen, Jie ;
Yang, Xiaofeng .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (03) :1159-1179