Quenched lattice fluctuations in optically driven SrTiO3

被引:19
作者
Fechner, M. [1 ]
Foerst, M. [1 ]
Orenstein, G. [2 ]
Krapivin, V. [2 ]
Disa, A. S. [1 ,3 ]
Buzzi, M. [1 ]
von Hoegen, A. [1 ]
de la Pena, G. [2 ]
Nguyen, Q. L. [2 ,4 ]
Mankowsky, R. [5 ]
Sander, M. [5 ]
Lemke, H. [5 ]
Deng, Y. [5 ]
Trigo, M. [2 ]
Cavalleri, A. [1 ,6 ]
机构
[1] Max Planck Inst Struct & Dynam Matter, Hamburg, Germany
[2] SLAC Natl Accelerator Lab, Stanford Pulse Inst, Menlo Pk, CA USA
[3] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY USA
[4] SLAC Natl Accelerator Lab, Linac Coherent Light Source, Menlo Pk, CA USA
[5] Paul Scherrer Inst, Villigen, Switzerland
[6] Univ Oxford, Dept Phys, Clarendon Lab, Oxford, England
关键词
TOTAL-ENERGY CALCULATIONS; X-RAY-SCATTERING; FERROELECTRICITY; DYNAMICS; TRANSITION; FIELD;
D O I
10.1038/s41563-023-01791-y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Crystal lattice fluctuations, which are known to influence phase transitions of quantum materials in equilibrium, are also expected to determine the dynamics of light-induced phase changes. However, they have only rarely been explored in these dynamical settings. Here we study the time evolution of lattice fluctuations in the quantum paraelectric SrTiO3, in which mid-infrared drives have been shown to induce a metastable ferroelectric state. Crucial in these physics is the competition between polar instabilities and antiferrodistortive rotations, which in equilibrium frustrate the formation of long-range ferroelectricity. We make use of high-intensity mid-infrared optical pulses to resonantly drive the Ti-O-stretching mode at 17 THz, and we measure the resulting change in lattice fluctuations using time-resolved X-ray diffuse scattering at a free-electron laser. After a prompt increase, we observe a long-lived quench in R-point antiferrodistortive lattice fluctuations. Their enhancement and reduction are theoretically explained by considering the fourth-order nonlinear phononic interactions to the driven optical phonon and third-order coupling to lattice strain, respectively. These observations provide a number of testable hypotheses for the physics of light-induced ferroelectricity.
引用
收藏
页码:363 / 368
页数:9
相关论文
共 45 条
[31]   Ultrafast transient increase of oxygen octahedral rotations in a perovskite [J].
Porer, M. ;
Fechner, M. ;
Kubli, M. ;
Neugebauer, M. J. ;
Parchenko, S. ;
Esposito, V ;
Narayan, A. ;
Spaldin, N. A. ;
Huber, R. ;
Radovic, M. ;
Bothschafter, E. M. ;
Glownia, J. M. ;
Sato, T. ;
Song, S. ;
Johnson, S. L. ;
Staub, U. .
PHYSICAL REVIEW RESEARCH, 2019, 1 (01)
[32]   Breaking symmetry with light: Ultrafast ferroelectricity and magnetism from three-phonon coupling [J].
Radaelli, Paolo G. .
PHYSICAL REVIEW B, 2018, 97 (08)
[33]   DIELECTRIC SUSCEPTIBILITY IN QUANTUM FERROELECTRICS [J].
RYTZ, D ;
HOCHLI, UT ;
BILZ, H .
PHYSICAL REVIEW B, 1980, 22 (01) :359-364
[34]   LATTICE-DYNAMICAL STUDY OF 110 DEGREES K PHASE TRANSITION IN SRTIO3 [J].
SHIRANE, G ;
YAMADA, Y .
PHYSICAL REVIEW, 1969, 177 (02) :858-&
[35]   Femtosecond X-ray measurement of coherent lattice vibrations near the Lindemann stability limit [J].
Sokolowski-Tinten, K ;
Blome, C ;
Blums, J ;
Cavalleri, A ;
Dietrich, C ;
Tarasevitch, A ;
Uschmann, I ;
Förster, E ;
Kammler, M ;
Horn-von-Hoegen, M ;
von der Linde, D .
NATURE, 2003, 422 (6929) :287-289
[36]   Ultrafast phononic switching of magnetization [J].
Stupakiewicz, A. ;
Davies, C. S. ;
Szerenos, K. ;
Afanasiev, D. ;
Rabinovich, K. S. ;
Boris, A. V. ;
Caviglia, A. ;
Kimel, A. V. ;
Kirilyuk, A. .
NATURE PHYSICS, 2021, 17 (04) :489-+
[37]  
Thouin F, 2019, NAT MATER, V18, P349, DOI [10.1016/0022-3093(95)00355-X, 10.1038/s41563-018-0262-7]
[38]   First principles phonon calculations in materials science [J].
Togo, Atsushi ;
Tanaka, Isao .
SCRIPTA MATERIALIA, 2015, 108 :1-5
[39]  
Trigo M, 2013, NAT PHYS, V9, P790, DOI [10.1038/NPHYS2788, 10.1038/nphys2788]
[40]   Quantum paraelectricity and structural phase transitions in strontium titanate beyond density functional theory [J].
Verdi, Carla ;
Ranalli, Luigi ;
Franchini, Cesare ;
Kresse, Georg .
PHYSICAL REVIEW MATERIALS, 2023, 7 (03)