MRI-Guided Adaptive Radiation Therapy

被引:7
作者
Benitez, Cecil M. [1 ]
Chuong, Michael D. [2 ]
Kuenzel, Luise A. [3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ]
Thorwarth, Daniela [11 ,12 ]
机构
[1] UCLA, Dept Radiat Oncol, Med Ctr, Los Angeles, CA USA
[2] Miami Canc Inst, Dept Radiat Oncol, Baptist Hlth South Florida, Miami, FL USA
[3] Natl Ctr Tumor Dis NCT, Dresden, Germany
[4] German Canc Res Ctr, Heidelberg, Germany
[5] Tech Univ Dresden, Fac Med, Dresden, Germany
[6] Tech Univ Dresden, Univ Hosp Carl Gustav Carus, Dresden, Germany
[7] Helmholtz Zentrum Dresden Rossendorf HZDR, Dresden, Germany
[8] Tech Univ Dresden, Univ Hosp, Fac Med Carl Gustav Carus, Dresden, Germany
[9] Tech Univ Dresden, Fac Med, OncoRay Natl Ctr Radiat Res Oncol, Helmholtz Zentrum Dresden Rossendorf, Dresden, Germany
[10] Tech Univ Dresden, Univ Hosp Carl Gustav Carus, Helmholtz Zentrum Dresden Rossendorf, Dresden, Germany
[11] Univ Tubingen, Dept Radiat Oncol, Sect Biomed Phys, Tubingen, Germany
[12] Univ Hosp Tubingen, Dept Radiat Oncol, Sect Biomed Phys, Hoppe Seyler Str 3, D-72076 Tubingen, Germany
关键词
CLINICAL-EVALUATION; PANCREATIC-CANCER; PROSTATE-CANCER; RADIOTHERAPY; LINAC; FEASIBILITY; HEAD; VERIFICATION; PROGRESSION; EXPERIENCE;
D O I
10.1016/j.semradonc.2023.10.013
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Magnetic resonance imaging-guided radiation therapy (MRIgRT) has improved soft tissue contrast over computed tomography (CT) based image-guided RT. Superior visualization of the target and surrounding radiosensitive structures has the potential to improve onco-logical outcomes partly due to safer dose-escalation and adaptive planning. In this review, we highlight the workflow of adaptive MRIgRT planning, which includes simulation imaging, daily MRI, identifying isocenter shifts, contouring, plan optimization, quality control, and delivery. Increased utilization of MRIgRT will depend on addressing technical limita-tions of this technology, while addressing treatment efficacy, cost-effectiveness, and workflow training.
引用
收藏
页码:84 / 91
页数:8
相关论文
共 104 条
  • [1] Development and implementation of an automatic air delineation technique for MRI-guided adaptive radiation therapy
    Ahunbay, Ergun
    Parchur, Abdul K.
    Paulson, Eric
    Chen, Xinfeng
    Omari, Eenas
    Li, X. Allen
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2022, 67 (14)
  • [2] Higher Biologically Effective Dose Predicts Survival in SBRT of Pancreatic Cancer: A Multicentric Analysis (PAULA-1)
    Arcelli, Alessandra
    Guido, Alessandra
    Buwenge, Milly
    Simoni, Nicola
    Mazzarotto, Renzo
    Macchia, Gabriella
    Deodato, Francesco
    Cilla, Savino
    Bonomo, Pierluigi
    Scotti, Valerio
    Belgioia, Liliana
    Tolento, Giorgio
    Cellini, Francesco
    Grassi, Elisa
    Di Marco, Mariacristina
    Casadei, Riccardo
    Morganti, Alessio G.
    Cammelli, Silvia
    [J]. ANTICANCER RESEARCH, 2020, 40 (01) : 465 - 472
  • [3] Baines J, 2021, MR Linac
  • [4] Cancer and Radiation Therapy: Current Advances and Future Directions
    Baskar, Rajamanickam
    Lee, Kuo Ann
    Yeo, Richard
    Yeoh, Kheng-Wei
    [J]. INTERNATIONAL JOURNAL OF MEDICAL SCIENCES, 2012, 9 (03): : 193 - 199
  • [5] First system for fully-automated multi-criterial treatment planning for a high-magnetic field MR-Linac applied to rectal cancer
    Bijman, Rik
    Rossi, Linda
    Janssen, Tomas
    de Ruiter, Peter
    Carbaat, Casper
    van Triest, Baukelien
    Breedveld, Sebastiaan
    Sonke, Jan-Jakob
    Heijmen, Ben
    [J]. ACTA ONCOLOGICA, 2020, 59 (08) : 926 - 932
  • [6] Fast and robust online adaptive planning in stereotactic MR-guided adaptive radiation therapy (SMART) for pancreatic cancer
    Bohoudi, O.
    Bruynzeel, A. M. E.
    Senan, S.
    Cuijpers, J. P.
    Slotman, B. J.
    Lagerwaard, F. J.
    Palacios, M. A.
    [J]. RADIOTHERAPY AND ONCOLOGY, 2017, 125 (03) : 439 - 444
  • [7] MR-Guided Radiotherapy for Liver Malignancies
    Boldrini, Luca
    Corradini, Stefanie
    Gani, Cihan
    Henke, Lauren
    Hosni, Ali
    Romano, Angela
    Dawson, Laura
    [J]. FRONTIERS IN ONCOLOGY, 2021, 11
  • [8] Deep learning-based prediction of deliverable adaptive plans for MR-guided adaptive radiotherapy: A feasibility study
    Buchanan, Laura
    Hamdan, Saleh
    Zhang, Ying
    Chen, Xinfeng
    Li, X. Allen
    [J]. FRONTIERS IN ONCOLOGY, 2023, 13
  • [9] Chemical exchange saturation transfer MRI in central nervous system tumours on a 1.5 T MR-Linac
    Chan, Rachel W.
    Lawrence, Liam S. P.
    Oglesby, Ryan T.
    Chen, Hanbo
    Stewart, James
    Theriault, Aimee
    Campbell, Mikki
    Ruschin, Mark
    Myrehaug, Sten
    Atenafu, Eshetu G.
    Keller, Brian
    Chugh, Brige
    MacKenzie, Scott
    Tseng, Chia-Lin
    Detsky, Jay
    Maralani, Pejman J.
    Czarnota, Greg J.
    Stanisz, Greg J.
    Sahgal, Arjun
    Lau, Angus Z.
    [J]. RADIOTHERAPY AND ONCOLOGY, 2021, 162 : 140 - 149
  • [10] Technical Note: Development and performance of a software tool for quality assurance of online replanning with a conventional Linac or MR-Linac
    Chen, Guang-Pei
    Ahunbay, Ergun
    Li, X. Allen
    [J]. MEDICAL PHYSICS, 2016, 43 (04) : 1713 - 1719