Improved fault detection based on kernel PCA for monitoring industrial applications

被引:14
作者
Attouri, Khadija [1 ]
Mansouri, Majdi [2 ]
Hajji, Mansour [1 ]
Kouadri, Abdelmalek [3 ]
Bensmail, Abderrazak [3 ,4 ]
Bouzrara, Kais [5 ]
Nounou, Hazem [2 ]
机构
[1] Kairouan Univ, Higher Inst Appl Sci & Technol Kasserine, Res Unit Adv Mat & Nanotechnol UR16ES03, Kasserine 1200, Tunisia
[2] Texas A&M Univ Qatar, Elect & Comp Engn Program, Doha, Qatar
[3] Univ M Hamed Bougara Boumerdes, Inst Elect & Elect Engn, Signals & Syst Lab, Boumerdes, Algeria
[4] SCAEK, Ain El Kebira Cement Plant, BP 01, Ain El Kebira 19400, Algeria
[5] Natl Engn Sch Monastir, Res Lab Automat Signal Proc & Image, Monastir 5019, Tunisia
关键词
Fault detection (FD); Spectral Clustering (SpC); Random Sampling (RnS); Reduced Kernel Principal Component Analysis (RKPCA); Tennessee Eastman process (TEP); Cement Plant; PRINCIPAL COMPONENTS; NUMBER;
D O I
10.1016/j.jprocont.2023.103143
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The conventional Kernel Principal Component Analysis (KPCA)-based fault detection technique requires more computation time and memory storage space to analyze large-sized datasets. In this context, two techniques, Spectral Clustering (SpC) and Random Sampling (RnS), are developed to reduce the dataset size by retaining the more relevant observations while preserving the main statistical characteristics of the original dataset. These two techniques and others use the training dataset from two different industrial processes, Tennessee Eastman (TEP) and Cement Plant (CP) to be reduced and provided to build the Reduced KPCA (RKPCA) model-based fault detection scheme. The obtained results show the effectiveness of the proposed techniques in terms of some fault detection performance indices and computation costs.
引用
收藏
页数:15
相关论文
共 45 条
[1]   Reconstruction-Based Contribution for Process Monitoring with Kernel Principal Component Analysis [J].
Alcala, Carlos F. ;
Qin, S. Joe .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2010, 49 (17) :7849-7857
[2]   A Modified Moving Window dynamic PCA with Fuzzy Logic Filter and application to fault detection [J].
Ammiche, Mustapha ;
Kouadri, Abdelmalek ;
Bensmail, Abderazak .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2018, 177 :100-113
[3]   New reduced kernel PCA for fault detection and diagnosis in cement rotary kiln [J].
Bencheikh, F. ;
Harkat, M. F. ;
Kouadri, A. ;
Bensmail, A. .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2020, 204
[4]  
Cochran WG., 1977, Sampling Techniques, V3rd ed
[5]   A kernel principal component analysis of coexisting attractors within a generalized Lorenz model [J].
Cui, Jialin ;
Shen, Bo-Wen .
CHAOS SOLITONS & FRACTALS, 2021, 146
[6]   DIAGNOSING MULTIPLE FAULTS [J].
DEKLEER, J ;
WILLIAMS, BC .
ARTIFICIAL INTELLIGENCE, 1987, 32 (01) :97-130
[7]   A Hybrid Approach for Process Monitoring: Improving Data-Driven Methodologies With Dataset Size Reduction and Interval-Valued Representation [J].
Dhibi, Khaled ;
Fezai, Radhia ;
Mansouri, Majdi ;
Kouadri, Abdelmalek ;
Harkat, Mohamed-Faouzi ;
Bouzara, Kais ;
Nounou, Hazem ;
Nounou, Mohamed .
IEEE SENSORS JOURNAL, 2020, 20 (17) :10228-10239
[8]   A PLANT-WIDE INDUSTRIAL-PROCESS CONTROL PROBLEM [J].
DOWNS, JJ ;
VOGEL, EF .
COMPUTERS & CHEMICAL ENGINEERING, 1993, 17 (03) :245-255
[9]   Multiscale Gaussian process regression-based generalized likelihood ratio test for fault detection in water distribution networks [J].
Fazai, R. ;
Mansouri, M. ;
Abodayeh, K. ;
Puig, V. ;
Raouf, M. -I. Noori ;
Nounou, H. ;
Nounou, M. .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2019, 85 :474-491
[10]   Reduced Kernel Principal Component Analysis for fault detection and its application to an air quality monitoring network [J].
Fezai, Radhia ;
Mansouri, Majdi ;
Taouali, Okba ;
Harkat, Mohamed Faouzi ;
Nounou, Hazem .
2018 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2018, :3159-3164