Folk arts-inspired twice-coagulated configuration-editable tough aerogels enabled by transformable gel precursors

被引:37
作者
Li, Lishan [1 ]
Yang, Guandu [1 ,2 ]
Lyu, Jing [1 ]
Sheng, Zhizhi [1 ]
Ma, Fengguo [2 ]
Zhang, Xuetong [1 ,3 ]
机构
[1] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, Suzhou, Peoples R China
[2] Qingdao Univ Sci & Technol, Sch Polymer Sci & Engn, Key Lab Rubber Plast, Minist Educ, Qingdao, Peoples R China
[3] UCL, Div Surg & Intervent Sci, London, England
基金
中国国家自然科学基金;
关键词
D O I
10.1038/s41467-023-44156-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Aerogels, as famous lightweight and porous nanomaterials, have attracted considerable attention in various emerging fields in recent decades, however, both low density and weak mechanical performance make their configuration-editing capability challenging. Inspired by folk arts, herein we establish a highly efficient twice-coagulated (TC) strategy to fabricate configuration-editable tough aerogels enabled by transformable gel precursors. As a proof of concept, aramid nanofibers (ANFs) and polyvinyl alcohol (PVA) are selected as the main components of aerogel, among which PVA forms a flexible configuration-editing gel network in the first coagulation process, and ANF forms a configuration-locking gel network in the second coagulation process. TC strategy guarantees the resulting aerogels with both high toughness and feasible configuration editing capability individually or simultaneously. Altogether, the resulting tough aerogels with special configuration through soft to hard modulation provide great opportunities to break through the performance limits of the aerogels and expand application areas of aerogels. Aerogels attract considerable attention in various emerging fields in recent decades, but low density and weak mechanical performance make their configuration-editing capability challenging. Here the authors establish an efficient twice-coagulated strategy to fabricate configuration-editable tough aerogels enabled by transformable gel precursors.
引用
收藏
页数:11
相关论文
共 52 条
[1]   Bending Stiffness-Directed Fabricating of Kevlar Aerogel-Confined Organic Phase-Change Fibers [J].
Bao, Yaqian ;
Lyu, Jing ;
Liu, Zengwei ;
Ding, Yi ;
Zhang, Xuetong .
ACS NANO, 2021, 15 (09) :15180-15190
[2]   Pressure-Responsive Hierarchical Chiral Photonic Aerogels [J].
Cao, Yuanyuan ;
Lewis, Lev ;
Hamad, Wadood Y. ;
MacLachlan, Mark J. .
ADVANCED MATERIALS, 2019, 31 (21)
[3]  
Changhao Q., 2022, Chem. Eng. J, V454, P140263
[4]   General Suspended Printing Strategy toward Programmatically Spatial Kevlar Aerogels [J].
Cheng, Qingqing ;
Sheng, Zhizhi ;
Wang, Yongfeng ;
Lyu, Jing ;
Zhang, Xuetong .
ACS NANO, 2022, 16 (03) :4905-4916
[5]   Low-temperature reprogrammable dual light-responsive liquid crystalline elastomer films [J].
Das, Gautam ;
Jo, Hyunjin ;
Park, Soo-Young .
CHEMICAL ENGINEERING JOURNAL, 2023, 466
[6]   Ultrathin and Ultrastrong Kevlar Aramid Nanofiber Membranes for Highly Stable Osmotic Energy Conversion [J].
Ding, Li ;
Xiao, Dan ;
Zhao, Zihao ;
Wei, Yanying ;
Xue, Jian ;
Wang, Haihui .
ADVANCED SCIENCE, 2022, 9 (25)
[7]   Reaction-Spun Transparent Silica Aerogel Fibers [J].
Du, Yu ;
Zhang, Xiaohua ;
Wang, Jin ;
Liu, Zengwei ;
Zhang, Kun ;
Ji, Xiaofei ;
You, Yezi ;
Zhang, Xuetong .
ACS NANO, 2020, 14 (09) :11919-11928
[8]   Micro-Scale Auxetic Hierarchical Mechanical Metamaterials for Shape Morphing [J].
Dudek, K. K. ;
Martinez, J. A. Iglesias ;
Ulliac, G. ;
Kadic, M. .
ADVANCED MATERIALS, 2022, 34 (14)
[9]   Bioinspired spring origami [J].
Faber, Jakob A. ;
Arrieta, Andres F. ;
Studart, Andre R. .
SCIENCE, 2018, 359 (6382) :1386-+
[10]   Cellular solids [J].
Gibson, LJ .
MRS BULLETIN, 2003, 28 (04) :270-271