Crashworthiness study of tubular lattice structures based on triply periodic minimal surfaces under quasi-static axial crushing

被引:16
作者
Wan, Mincen [1 ,2 ]
Hu, Dayong [1 ,2 ]
Zhang, Hongbo [1 ,2 ]
Pi, Benlou [3 ]
Ye, Xubin [4 ]
机构
[1] Beihang Univ, Sch Transportat Sci & Engn, Dept Aircraft Airworthiness Engn, Beijing 100191, Peoples R China
[2] Aircraft Engine Integrated Syst Safety Beijing Key, Beijing 100191, Peoples R China
[3] Beijing Inst Struct & Environm Engn, Beijing 100076, Peoples R China
[4] Aero Engine Corp China, Beijing Inst Aeronaut Mat, Beijing 100095, Peoples R China
基金
中国国家自然科学基金;
关键词
TPMS; Crushing; Specific energy absorption; Crashworthiness; Tubular lattice structure; ENERGY-ABSORPTION CHARACTERISTICS; MECHANICAL-PROPERTIES; CYLINDRICAL STRUCTURE; CELLULAR MATERIALS; COMPOSITE; BEHAVIOR; THICKNESS;
D O I
10.1016/j.compstruct.2023.117703
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This study explored the crashworthiness performance of four types of tubular lattice structures based on triply periodic minimal surfaces (named TPMS-T)-Diamond, Gyroid, IWP, and Primitive. Their axial crushing behaviors were examined by experiments and numerical simulation, and compared against typical tubes. TPMS-T outperformed traditional tubes in terms of crashworthiness. Subsequently, the effects of the relative density (rho), density gradient and hybrid design on the crushing behaviors of TPMS-T were analyzed numerically. Results showed that rho had a significant effect on crashworthiness performance and deformation modes, and density gradient and hybrid design could lead to lower initial peak crushing force (Fp), higher specific energy absorption (SEA), and larger crushing force efficiency (CFE). Finally, numerical investigations of the improved TPMS-T structures were shown to enhance crashworthiness performance through interaction with tube walls.
引用
收藏
页数:34
相关论文
empty
未找到相关数据