Canal surfaces generated by special curves and quaternions

被引:1
作者
Caliskan, Abdussamet [1 ]
机构
[1] Ordu Univ, Fatsa Vocat Sch, Accounting & Tax Applicat, Ordu, Turkiye
关键词
Canal Surface; Tubular surface; Bertrand curve; Involute-Evolute curve; Mannheim Curve; Quaternion; Rotation matrices; Homothetic motion; MANNHEIM PARTNER CURVES;
D O I
10.1007/s13370-023-01138-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show that canal and tubular surfaces can be obtained by special curves. Also, we give the equations of the canal and tubular surfaces given by the different frames. Besides, these surfaces are obtained by quaternion and homothetic motion.
引用
收藏
页数:11
相关论文
共 50 条
[31]   CANAL SURFACES WITH GENERALIZED 1-TYPE GAUSS MAP [J].
Qian, Jinhua ;
Su, Mengfei ;
Kim, Young Ho .
REVISTA DE LA UNION MATEMATICA ARGENTINA, 2021, 62 (01) :199-211
[32]   Blends of canal surfaces from polyhedral medial transform representations [J].
Bastl, Bohumir ;
Juettler, Bert ;
Lavicka, Miroslav ;
Schulz, Tino .
COMPUTER-AIDED DESIGN, 2011, 43 (11) :1477-1484
[33]   Almost rotation-minimizing rational parametrization of canal surfaces [J].
Choi, HI ;
Kwon, SH ;
Wee, NS .
COMPUTER AIDED GEOMETRIC DESIGN, 2004, 21 (09) :859-881
[34]   An alternative moving frame for tubular surfaces around timelike curves in the Minkowski 3-space [J].
Karacan, Murat Kemal ;
Bukcu, Bahaddin .
BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2007, 12 (02) :73-80
[35]   Surfaces of Revolution and Canal Surfaces with Generalized Cheng-Yau 1-Type Gauss Maps [J].
Qian, Jinhua ;
Fu, Xueshan ;
Tian, Xuegian ;
Kim, Young Ho .
MATHEMATICS, 2020, 8 (10) :1-12
[36]   Geometric Characterizations of Canal Surfaces in Minkowski 3-Space II [J].
Qian, Jinhua ;
Su, Mengfei ;
Fu, Xueshan ;
Jung, Seoung Dal .
MATHEMATICS, 2019, 7 (08)
[37]   GEOMETRIC CHARACTERIZATIONS OF CANAL SURFACES IN MINKOWSKI 3-SPACE I [J].
Fu, Xueshan ;
Jung, Seoung Dal ;
Qian, Jinhua ;
Su, Mengfei .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (04) :867-883
[38]   Classifications of Canal Surfaces with the Gauss Maps in Minkowski 3-Space [J].
Qian, Jinhua ;
Tian, Xueqian ;
Fu, Xueshan ;
Kim, Young Ho .
MATHEMATICS, 2020, 8 (09)
[39]   A symbolic-numerical method for computing approximate parameterizations of canal surfaces [J].
Bizzarri, Michal ;
Lavicka, Miroslav .
COMPUTER-AIDED DESIGN, 2012, 44 (09) :846-857
[40]   BERTRAND CURVES AND RAZZABONI SURFACES IN MINKOWSKI 3-SPACE [J].
Xu, Chuanyou ;
Cao, Xifang ;
Zhu, Peng .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (02) :377-394