Mn2+-Doped MoS2/MXene Heterostructure Composites as Cathodes for Aqueous Zinc-Ion Batteries

被引:26
作者
Yang, Wenjing [1 ]
Mou, Lianshan [1 ]
Xiao, Baoquan [1 ]
Chen, Jie [1 ]
Wang, Di [1 ,2 ]
Peng, Shanglong [1 ]
Huang, Juanjuan [1 ]
机构
[1] Lanzhou Univ, Sch Mat & Energy, Natl & Local Joint Engn Lab Opt Convers Mat & Tech, Lanzhou 730000, Peoples R China
[2] Shihezi Univ, Coll Sci, Shihezi 832003, Xinjiang, Peoples R China
关键词
aqueous zinc-ion battery; molybdenum disulfide; heterostructure; Mn2+ doping; MXene; MOS2; NANOSHEETS; 1T-MOS2; ANODE; INTERCALATION; INTERLAYER;
D O I
10.1021/acsami.3c12494
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Typical layered transition-metal chalcogenide materials, especially MoS2, are gradually attracting widespread attention as aqueous Zn-ion battery (AZIB) cathode materials by virtue of their two-dimensional structure, tunable band gap, and abundant edges. The metastable phase 1T-MoS2 exhibits better electrical conductivity, electrochemical activity, and zinc storage capacity compared to the thermodynamically stable 2H-MoS2. However, 1T-MoS2 is still limited by the phase stability and layered structure destruction for AZIB application. Thus, a three-dimensional interconnected network heterostructure (Mn-MoS2/MXene) consisting of Mn2+-doped MoS2 and MXene with a high percentage of 1T phase (82.9%) was synthesized by hydrothermal methods and investigated as the cathode for AZIBs. It was found that S-Mn-S covalent bonds between MoS2 interlayers and Ti-O-Mo bonds at heterogeneous interfaces can act as "electron bridges" to facilitate electron and charge transfer. And the doping of Mn2+ and the combination of MXene not only expanded the interlayer spacing of MoS2 but also maintained the metastable structure of 1T-MoS2 nanosheets, acting to reduce the activation energy for Zn2+ intercalation and enhance specific capacity. The obtained Mn-MoS2/MXene contains more 1T-MoS2 and provides an improved specific capacity of 191.7 mAh g(-1) at 0.1 A g(-1). Compared with Mn-MoS2 and pure MoS2, it also exhibits enhanced cycling stability with a capacity retention of 80.3% after 500 cycles at 1 A g(-1). Besides, the conductivity of Mn-MoS2/MXene is significantly improved, which induces a lower activation energy of the zinc ions during intercalation/deintercalation.
引用
收藏
页码:51231 / 51240
页数:10
相关论文
共 60 条
[1]   Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2TX MXene) [J].
Alhabeb, Mohamed ;
Maleski, Kathleen ;
Anasori, Babak ;
Lelyukh, Pavel ;
Clark, Leah ;
Sin, Saleesha ;
Gogotsi, Yury .
CHEMISTRY OF MATERIALS, 2017, 29 (18) :7633-7644
[2]   2D metal carbides and nitrides (MXenes) for energy storage [J].
Anasori, Babak ;
Lukatskaya, Maria R. ;
Gogotsi, Yury .
NATURE REVIEWS MATERIALS, 2017, 2 (02)
[3]   Rechargeable aqueous hybrid ion batteries: developments and prospects [J].
Ao, Huaisheng ;
Zhao, Yingyue ;
Zhou, Jie ;
Cai, Wenlong ;
Zhang, Xiaotan ;
Zhu, Yongchun ;
Qian, Yitai .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (32) :18708-18734
[4]   Tuning the interlayer of transition metal oxides for electrochemical energy storage [J].
Augustyn, Veronica .
JOURNAL OF MATERIALS RESEARCH, 2017, 32 (01) :2-15
[5]   Glucose-Induced Synthesis of 1T-MoS2/C Hybrid for High-Rate Lithium-Ion Batteries [J].
Bai, Jin ;
Zhao, Bangchuan ;
Zhou, Jiafeng ;
Si, Jianguo ;
Fang, Zhitang ;
Li, Kunzhen ;
Ma, Hongyang ;
Dai, Jianming ;
Zhu, Xuebin ;
Sun, Yuping .
SMALL, 2019, 15 (14)
[6]   Facile Synthesis of Crumpled Nitrogen-Doped MXene Nanosheets as a New Sulfur Host for Lithium-Sulfur Batteries [J].
Bao, Weizhai ;
Liu, Lin ;
Wang, Chengyin ;
Choi, Sinho ;
Wang, Dan ;
Wang, Guoxiu .
ADVANCED ENERGY MATERIALS, 2018, 8 (13)
[7]   Nickel-decorated MoS2/MXene nanosheets composites for electrocatalytic oxidation of methanol [J].
Chandran, Mijun ;
Raveendran, Asha ;
Vinoba, Mari ;
Vijayan, Baiju Kizhakkekilikoodayil ;
Bhagiyalakshmi, Margandan .
CERAMICS INTERNATIONAL, 2021, 47 (19) :26847-26855
[8]   MoS2 Confined MXene Heterostructures as Electrode Material for Energy Storage Application [J].
Chandran, Mijun ;
Thomas, Anitta ;
Raveendran, Asha ;
Vinoba, Mari ;
Bhagiyalakshmi, Margandan .
JOURNAL OF ENERGY STORAGE, 2020, 30
[9]   Hierarchical MoS2@RGO nanosheets for high performance sodium storage [J].
Che, Zongzhou ;
Li, Yafeng ;
Chen, Kaixiang ;
Wei, Mingdeng .
JOURNAL OF POWER SOURCES, 2016, 331 :50-57
[10]   Interlayer Modification of Pseudocapacitive Vanadium Oxide and Zn(H2O)n2+ Migration Regulation for Ultrahigh Rate and Durable Aqueous Zinc-Ion Batteries [J].
Chen, Hangda ;
Huang, Juanjuan ;
Tian, Shuhao ;
Liu, Li ;
Qin, Tianfeng ;
Song, Lei ;
Liu, Yanpeng ;
Zhang, Yanan ;
Wu, Xiaogang ;
Lei, Shulai ;
Peng, Shanglong .
ADVANCED SCIENCE, 2021, 8 (14)