From statistical inference to machine learning: A paradigm shift in contemporary cardiovascular pharmacotherapy

被引:4
作者
Pavlov, Marin [1 ]
Baric, Domjan [2 ]
Novak, Andrej [1 ,2 ]
Manola, Sime [1 ]
Jurin, Ivana [1 ]
机构
[1] Dubrava Univ Hosp, Dept Cardiol, Avenija Gojka Suska 6, Zagreb, Croatia
[2] Univ Zagreb, Fac Sci, Dept Phys, Zagreb, Croatia
关键词
cardiovascular pharmacology; extreme gradient boosting; heart failure; interpretability; machine learning; Shapley additive explanations; CONCISE GUIDE; HEART-FAILURE;
D O I
10.1111/bcp.15927
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Aims Heart failure with reduced ejection fraction (HFrEF) poses significant challenges for clinicians and researchers, owing to its multifaceted aetiology and complex treatment regimens. In light of this, artificial intelligence methods offer an innovative approach to identifying relationships within complex clinical datasets. Our study aims to explore the potential for machine learning algorithms to provide deeper insights into datasets of HFrEF patients.Methods To this end, we analysed a cohort of 386 HFrEF patients who had been initiated on sodium-glucose co-transporter-2 inhibitor treatment and had completed a minimum of a 6-month follow-up.Results In traditional frequentist statistical analyses, patients receiving the highest doses of beta-blockers (BBs) (chi-square test, P = .036) and those newly initiated on sacubitril-valsartan (chi-square test, P = .023) showed better outcomes. However, none of these pharmacological features stood out as independent predictors of improved outcomes in the Cox proportional hazards model. In contrast, when employing eXtreme Gradient Boosting (XGBoost) algorithms in conjunction with the data using Shapley additive explanations (SHAP), we identified several models with significant predictive power. The XGBoost algorithm inherently accommodates non-linear distribution, multicollinearity and confounding. Within this framework, pharmacological categories like 'newly initiated treatment with sacubitril/valsartan' and 'BB dose escalation' emerged as strong predictors of long-term outcomes.Conclusions In this manuscript, we not only emphasize the strengths of this machine learning approach but also discuss its potential limitations and the risk of identifying statistically significant yet clinically irrelevant predictors.
引用
收藏
页码:691 / 699
页数:9
相关论文
共 26 条
[1]  
Alexander SPH, 2019, BRIT J PHARMACOL, V176, pS297, DOI [10.1111/bph.14752, 10.1111/bph.14749]
[2]   THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G protein-coupled receptors [J].
Alexander, Stephen P. H. ;
Christopoulos, Arthur ;
Davenport, Anthony P. ;
Kelly, Eamonn ;
Mathie, Alistair ;
Peters, John A. ;
Veale, Emma L. ;
Armstrong, Jane F. ;
Faccenda, Elena ;
Harding, Simon D. ;
Pawson, Adam J. ;
Sharman, Joanna L. ;
Southan, Christopher ;
Davies, Jamie A. ;
Arumugam, Thiruma V. ;
Bennett, Andrew ;
Sjogren, Benita ;
Sobey, Christopher ;
Wong, Szu Shen ;
Abbracchio, Maria P. ;
Alexander, Wayne ;
Al-hosaini, Khaled ;
Back, Magnus ;
Beaulieu, Jean-Martin ;
Bernstein, Kenneth E. ;
Bettler, Bernhard ;
Birdsall, Nigel J. M. ;
Blaho, Victoria ;
Bousquet, Corinne ;
Brauner-Osborne, Hans ;
Burnstock, Geoffrey ;
Calo, Girolamo ;
Castano, Justo P. ;
Catt, Kevin J. ;
Ceruti, Stefania ;
Chazot, Paul ;
Chiang, Nan ;
Chun, Jerold ;
Cianciulli, Antonia ;
Clapp, Lucie H. ;
Couture, Rejean ;
Csaba, Zsolt ;
Dent, Gordon ;
Singh, Khuraijam Dhanachandra ;
Douglas, Steven D. ;
Dournaud, Pascal ;
Eguchi, Satoru ;
Escher, Emanuel ;
Filardo, Edward ;
Fong, Tung M. .
BRITISH JOURNAL OF PHARMACOLOGY, 2019, 176 :S21-S141
[3]   THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Nuclear hormone receptors [J].
Alexander, Stephen P. H. ;
Cidlowski, John A. ;
Kelly, Eamonn ;
Mathie, Alistair ;
Peters, John A. ;
Veale, Emma L. ;
Armstrong, Jane F. ;
Faccenda, Elena ;
Harding, Simon D. ;
Pawson, Adam J. ;
Sharman, Joanna L. ;
Southan, Christopher ;
Davies, Jamie A. .
BRITISH JOURNAL OF PHARMACOLOGY, 2019, 176 :S229-S246
[4]   THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Transporters [J].
Alexander, Stephen P. H. ;
Kelly, Eamonn ;
Mathie, Alistair ;
Peters, John A. ;
Veale, Emma L. ;
Armstrong, Jane F. ;
Faccenda, Elena ;
Harding, Simon D. ;
Pawson, Adam J. ;
Sharman, Joanna L. ;
Southan, Christopher ;
Davies, Jamie A. .
BRITISH JOURNAL OF PHARMACOLOGY, 2019, 176 :S397-S493
[5]   A comparative analysis of gradient boosting algorithms [J].
Bentejac, Candice ;
Csorgo, Anna ;
Martinez-Munoz, Gonzalo .
ARTIFICIAL INTELLIGENCE REVIEW, 2021, 54 (03) :1937-1967
[6]   A Machine-Learning-Based Prediction Method for Hypertension Outcomes Based on Medical Data [J].
Chang, Wenbing ;
Liu, Yinglai ;
Xiao, Yiyong ;
Yuan, Xinglong ;
Xu, Xingxing ;
Zhang, Siyue ;
Zhou, Shenghan .
DIAGNOSTICS, 2019, 9 (04)
[7]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[8]  
Dillon E., 2021, Be careful when interpreting predictive models in search of causal insightsSHAP latest documentation
[9]  
Grinsztajn L., 2022, Why do tree-based models still outperform deep learning on tabular data?
[10]  
Hagan AO., 2010, OXFORD HDB APPL BAYE