Quantum Wasserstein distance based on an optimization over separable states

被引:0
|
作者
Toth, Geza [1 ,2 ,3 ,4 ,5 ]
Pitrik, Jozsef [5 ,6 ,7 ]
机构
[1] Univ Basque Country UPV EHU, Theoret Phys, ES-48080 Bilbao, Spain
[2] Univ Basque Country UPV EHU, EHU Quantum Ctr, Barrio Sarriena S N, ES-48940 Leioa, Biscay, Spain
[3] Donostia Int Phys Ctr DIPC, ES-20080 San Sebastian, Spain
[4] Basque Fdn Sci, IKERBASQUE, ES-48011 Bilbao, Spain
[5] Wigner Res Ctr Phys, Inst Solid State Phys & Opt, H-1525 Budapest, Hungary
[6] Alfred Reny Inst Math, Realtanoda u 13-15, H-1053 Budapest, Hungary
[7] Budapest Univ Technol & Econ, Inst Math, Dept Anal & Operat Res, Muegyetem rkp 3, H-1111 Budapest, Hungary
来源
QUANTUM | 2023年 / 7卷
关键词
METRIC-MEASURE-SPACES; FISHER INFORMATION; MEAN-FIELD; ENTANGLEMENT; GEOMETRY; INEQUALITIES; COVARIANCE; FRAMEWORK; ENTROPY; LIMITS;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We define the quantum Wasserstein distance such that the optimization of the coupling is carried out over bipartite separable states rather than bipartite quantum states in general, and examine its properties. Sur-prisingly, we find that the self-distance is related to the quantum Fisher information. We present a transport map corresponding to an optimal bipartite separable state. We discuss how the quantum Wasserstein distance introduced is connected to criteria detecting quantum entanglement. We define variance -like quantities that can be obtained from the quantum Wasserstein distance by replacing the minimization over quantum states by a maximization. We extend our results to a family of generalized quantum Fisher infor-mation quantities.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] Preparing quantum states by measurement-feedback control with Bayesian optimization
    Wu, Yadong
    Yao, Juan
    Zhang, Pengfei
    FRONTIERS OF PHYSICS, 2023, 18 (06)
  • [32] Second-order optimization strategies for neural network quantum states
    Drissi, M.
    Keeble, J. W. T.
    Sarmiento, J. Rozalen
    Rios, A.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2024, 382 (2275):
  • [33] Overlap of quantum many-body states with a separable state and phase transitions in the Dicke model: Zero and finite temperature
    Cui, H. T.
    PHYSICAL REVIEW A, 2010, 81 (04):
  • [34] Wasserstein-metric-based distributionally robust optimization method for unit commitment considering wind turbine uncertainty
    Chen, Gengrui
    Qi, Donglian
    Yan, Yunfeng
    Chen, Yulin
    Wang, Yaxin
    Mei, Jingcheng
    ENGINEERING REPORTS, 2023, 5 (10)
  • [35] Sparse attention with residual pyramidal depthwise separable convolutional based malware detection with optimization mechanism
    Ranjani, B.
    Chinnadurai, M.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [36] Classical Coherent States Based Quantum Information Processing and Quantum Computing Analogs
    Djordjevic, Ivan B.
    Nafria, Vijay
    IEEE ACCESS, 2024, 12 : 33569 - 33579
  • [37] Detecting initial system-environment correlations: Performance of various distance measures for quantum states
    Wissmann, S.
    Leggio, B.
    Breuer, H. -P.
    PHYSICAL REVIEW A, 2013, 88 (02):
  • [38] Long-distance transmission of arbitrary quantum states between spatially separated microwave cavities
    Wang, Yu
    Su, Qi-ping
    Liu, Tong
    Zhang, Guo-qiang
    Feng, Wei
    Yu, Yang
    Yang, Chui-ping
    OPTICS EXPRESS, 2024, 32 (03) : 4728 - 4744
  • [39] MEASUREMENT-BASED QUANTUM COMPUTATION WITH CLUSTER STATES
    Raussendorf, Robert
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2009, 7 (06) : 1053 - 1203
  • [40] Quantum Correlation Based on Uhlmann Fidelity for Gaussian States
    Liu, Liang
    Hou, Jinchuan
    Qi, Xiaofei
    ENTROPY, 2019, 21 (01)