Quantum Wasserstein distance based on an optimization over separable states

被引:0
|
作者
Toth, Geza [1 ,2 ,3 ,4 ,5 ]
Pitrik, Jozsef [5 ,6 ,7 ]
机构
[1] Univ Basque Country UPV EHU, Theoret Phys, ES-48080 Bilbao, Spain
[2] Univ Basque Country UPV EHU, EHU Quantum Ctr, Barrio Sarriena S N, ES-48940 Leioa, Biscay, Spain
[3] Donostia Int Phys Ctr DIPC, ES-20080 San Sebastian, Spain
[4] Basque Fdn Sci, IKERBASQUE, ES-48011 Bilbao, Spain
[5] Wigner Res Ctr Phys, Inst Solid State Phys & Opt, H-1525 Budapest, Hungary
[6] Alfred Reny Inst Math, Realtanoda u 13-15, H-1053 Budapest, Hungary
[7] Budapest Univ Technol & Econ, Inst Math, Dept Anal & Operat Res, Muegyetem rkp 3, H-1111 Budapest, Hungary
来源
QUANTUM | 2023年 / 7卷
关键词
METRIC-MEASURE-SPACES; FISHER INFORMATION; MEAN-FIELD; ENTANGLEMENT; GEOMETRY; INEQUALITIES; COVARIANCE; FRAMEWORK; ENTROPY; LIMITS;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We define the quantum Wasserstein distance such that the optimization of the coupling is carried out over bipartite separable states rather than bipartite quantum states in general, and examine its properties. Sur-prisingly, we find that the self-distance is related to the quantum Fisher information. We present a transport map corresponding to an optimal bipartite separable state. We discuss how the quantum Wasserstein distance introduced is connected to criteria detecting quantum entanglement. We define variance -like quantities that can be obtained from the quantum Wasserstein distance by replacing the minimization over quantum states by a maximization. We extend our results to a family of generalized quantum Fisher infor-mation quantities.
引用
收藏
页数:25
相关论文
共 50 条