Globalization of partial group actions on semiprime Lie algebras and unital Jordan algebras

被引:0
作者
Dokuchaev, Mikhailo [1 ]
Rodriguez, Jose L. Vilca [1 ]
机构
[1] Univ Sao Paulo, Dept Matemat, Rua Matao, 1010, BR-05508090 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
Lie algebra; Jordan algebra; Partial group action; Globalization; ENVELOPING ACTIONS; CROSSED-PRODUCTS; QUOTIENTS; INVERSE;
D O I
10.1016/j.jalgebra.2023.09.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give necessary and sufficient conditions for the existence of a semiprime globalization for a partial group action on a semiprime Lie algebra L, and with an additional reasonable condition, we show that this semiprime globalization is unique up to isomorphism. Moreover, under the same condition we prove that any globalizable partial group action on L induces a globalizable partial group action on its maximal quotient algebra. For Jordan algebras, we show that a globalizable partial group action on a unital Jordan algebra J induces a globalizable partial group action on the unital special universal envelope for J.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:510 / 532
页数:23
相关论文
共 52 条
[1]   MORITA EQUIVALENCE OF PARTIAL GROUP ACTIONS AND GLOBALIZATION [J].
Abadie, F. ;
Dokuchaev, M. ;
Exel, R. ;
Simon, J. J. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (07) :4957-4992
[2]   Enveloping actions and Takai duality for partial actions [J].
Abadie, F .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 197 (01) :14-67
[3]   Partial Hopf module categories [J].
Alvares, Edson R. ;
Alves, Marcelo M. S. ;
Batista, Eliezer .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2013, 217 (08) :1517-1534
[4]  
Alves MMS, 2011, CONTEMP MATH, V537, P13
[5]   ENVELOPING ACTIONS FOR PARTIAL HOPF ACTIONS [J].
Alves, Marcelo Muniz S. ;
Batista, Eliezer .
COMMUNICATIONS IN ALGEBRA, 2010, 38 (08) :2872-2902
[6]   Globalization of partial actions of groupoids on nonunital rings [J].
Bagio, Dirceu ;
Pinedo, Hector .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2016, 15 (05)
[7]   PARTIAL GROUPOID ACTIONS: GLOBALIZATION, MORITA THEORY, AND GALOIS THEORY [J].
Bagio, Dirceu ;
Paques, Antonio .
COMMUNICATIONS IN ALGEBRA, 2012, 40 (10) :3658-3678
[8]   Partial actions: what they are and why we care [J].
Batista, Eliezer .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2017, 24 (01) :35-71
[9]  
Behrens EA., 1956, MATH Z, V64, P169, DOI DOI 10.1007/BF01166565
[10]   GLOBALIZATION OF PARTIAL ACTIONS ON SEMIPRIME RINGS [J].
Bemm, Laerte ;
Ferrero, Miguel .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2013, 12 (04)