Unsupervised Anomaly Detection for Rural Fixed Wireless LTE Networks

被引:0
作者
Colpitts, Alexander G. B. [1 ]
Petersen, Brent R. [1 ]
机构
[1] Univ New Brunswick, Dept Elect & Comp Engn, Fredericton, NB E3B 5A3, Canada
来源
IEEE CANADIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING | 2023年 / 46卷 / 04期
关键词
Intelligent networks; network fault diagnosis; rural areas; unsupervised learning;
D O I
10.1109/ICJECE.2023.3275975
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This article presents an anomaly detection (AD) algorithm, robust AD for rural fixed wireless LTE (RAINFOREST), to address the difficulty of fault detection in LTE networks, specifically those that are rural and fixed wireless. We propose a hybrid AD method that uses network key performance indicators (KPIs), historical KPI forecasts, density-based spatial clustering of applications with noise (DBSCAN), and statistical analysis to detect anomalies. RAINFOREST outperformed benchmark AD methods and was able to detect faults in a rural commercial fixed wireless network earlier than existing LTE threshold-based alarms.
引用
收藏
页码:256 / 261
页数:6
相关论文
共 50 条
[41]   UDAD:An Accurate Unsupervised Database Anomaly Detection Method [J].
Zhong, Huazhen ;
Zhang, Fan ;
Zhao, Yining ;
Zhang, Weifang ;
Xiao, Wenjie ;
Tang, Xuehai ;
Zang, Liangjun .
2023 IEEE INTERNATIONAL PERFORMANCE, COMPUTING, AND COMMUNICATIONS CONFERENCE, IPCCC, 2023,
[42]   Unsupervised Technique for Anomaly Detection in Qatar Stock Market [J].
Al-Thani, Haya ;
Hassen, Hanadi ;
Al-maadeed, Somaya ;
Fetais, Noora ;
Jaoua, Ali .
2018 INTERNATIONAL CONFERENCE ON COMPUTER AND APPLICATIONS (ICCA), 2018, :116-122
[43]   Unsupervised representation learning and anomaly detection in ECG sequences [J].
Pereira, Joao ;
Silveira, Margarida .
INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2019, 22 (04) :389-407
[44]   USAD : UnSupervised Anomaly Detection on Multivariate Time Series [J].
Audibert, Julien ;
Michiardi, Pietro ;
Guyard, Frederic ;
Marti, Sebastien ;
Zuluaga, Maria A. .
KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, :3395-3404
[45]   Collision Detection for Robot Manipulators Using Unsupervised Anomaly Detection Algorithms [J].
Park, Kyu Min ;
Park, Younghyo ;
Yoon, Sangwoong ;
Park, Frank C. .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2022, 27 (05) :2841-2851
[46]   DualAD: Exploring Coupled Dual-Branch Networks for Multi-Class Unsupervised Anomaly Detection [J].
He, Shiwen ;
Chen, Yuehan ;
Wang, Liangpeng ;
Huang, Wei ;
Xu, Rong ;
Qian, Yurong .
ELECTRONICS, 2025, 14 (03)
[47]   Unsupervised anomaly detection in shearers via autoencoder networks and multi-scale correlation matrix reconstruction [J].
Song, Yang ;
Wang, Weidong ;
Wu, Yuxin ;
Fan, Yuhan ;
Zhao, Xuan .
INTERNATIONAL JOURNAL OF COAL SCIENCE & TECHNOLOGY, 2024, 11 (01)
[48]   Unsupervised context detection using wireless signals [J].
Phung, Dinh ;
Adams, Brett ;
Venkatesh, Svetha ;
Kumar, Mohan .
PERVASIVE AND MOBILE COMPUTING, 2009, 5 (06) :714-733
[49]   Automatic Root Cause Analysis for LTE Networks Based on Unsupervised Techniques [J].
Gomez-Andrades, Ana ;
Munoz, Pablo ;
Serrano, Inmaculada ;
Barco, Raquel .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2016, 65 (04) :2369-2386
[50]   DOPING: Generative Data Augmentation for Unsupervised Anomaly Detection with GAN [J].
Lim, Swee Kiat ;
Loo, Yi ;
Ngoc-Trung Tran ;
Ngai-Man Cheung ;
Roig, Gemma ;
Elovici, Yuval .
2018 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2018, :1122-1127