Unsupervised Anomaly Detection for Rural Fixed Wireless LTE Networks

被引:0
作者
Colpitts, Alexander G. B. [1 ]
Petersen, Brent R. [1 ]
机构
[1] Univ New Brunswick, Dept Elect & Comp Engn, Fredericton, NB E3B 5A3, Canada
来源
IEEE CANADIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING | 2023年 / 46卷 / 04期
关键词
Intelligent networks; network fault diagnosis; rural areas; unsupervised learning;
D O I
10.1109/ICJECE.2023.3275975
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This article presents an anomaly detection (AD) algorithm, robust AD for rural fixed wireless LTE (RAINFOREST), to address the difficulty of fault detection in LTE networks, specifically those that are rural and fixed wireless. We propose a hybrid AD method that uses network key performance indicators (KPIs), historical KPI forecasts, density-based spatial clustering of applications with noise (DBSCAN), and statistical analysis to detect anomalies. RAINFOREST outperformed benchmark AD methods and was able to detect faults in a rural commercial fixed wireless network earlier than existing LTE threshold-based alarms.
引用
收藏
页码:256 / 261
页数:6
相关论文
共 50 条
  • [31] Coincident learning for unsupervised anomaly detection of scientific instruments
    Humble, Ryan
    Zhang, Zhe
    OShea, Finn
    Darve, Eric
    Ratner, Daniel
    [J]. MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (03):
  • [32] UNSUPERVISED ANOMALY DETECTION IN DIGITAL PATHOLOGY USING GANS
    Poceviciute, Milda
    Eilertsen, Gabriel
    Lundstrom, Claes
    [J]. 2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 1878 - 1882
  • [33] Unsupervised 3D Brain Anomaly Detection
    Simarro Viana, Jaime
    de la Rosa, Ezequiel
    Vande Vyvere, Thijs
    Robben, David
    Sima, Diana M.
    [J]. BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT I, 2021, 12658 : 133 - 142
  • [34] Constructing a Meta-Learner for Unsupervised Anomaly Detection
    Gutowska, Malgorzata
    Little, Suzanne
    Mccarren, Andrew
    [J]. IEEE ACCESS, 2023, 11 : 45815 - 45825
  • [35] Anomaly Detection for Insider Threats Using Unsupervised Ensembles
    Le, Duc C.
    Zincir-Heywood, Nur
    [J]. IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2021, 18 (02): : 1152 - 1164
  • [36] EXPLORING DIFFUSION MODELS FOR UNSUPERVISED VIDEO ANOMALY DETECTION
    Tur, Anil Osman
    Dall'Asen, Nicola
    Beyan, Cigdem
    Ricci, Elisa
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 2540 - 2544
  • [37] A Survey on Unsupervised Anomaly Detection Algorithms for Industrial Images
    Cui, Yajie
    Liu, Zhaoxiang
    Lian, Shiguo
    [J]. IEEE ACCESS, 2023, 11 : 55297 - 55315
  • [38] Denoising Autoencoders for Unsupervised Anomaly Detection in Brain MRI
    Kascenas, Antanas
    Pugeault, Nicolas
    O'Neil, Alison Q.
    [J]. INTERNATIONAL CONFERENCE ON MEDICAL IMAGING WITH DEEP LEARNING, VOL 172, 2022, 172 : 653 - 664
  • [39] Unsupervised modeling of object tracks for fast anomaly detection
    Izo, Tomas
    Grimson, W. Eric L.
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-7, 2007, : 2225 - 2228
  • [40] USAD : UnSupervised Anomaly Detection on Multivariate Time Series
    Audibert, Julien
    Michiardi, Pietro
    Guyard, Frederic
    Marti, Sebastien
    Zuluaga, Maria A.
    [J]. KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 3395 - 3404