Unsupervised Anomaly Detection for Rural Fixed Wireless LTE Networks

被引:0
作者
Colpitts, Alexander G. B. [1 ]
Petersen, Brent R. [1 ]
机构
[1] Univ New Brunswick, Dept Elect & Comp Engn, Fredericton, NB E3B 5A3, Canada
来源
IEEE CANADIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING | 2023年 / 46卷 / 04期
关键词
Intelligent networks; network fault diagnosis; rural areas; unsupervised learning;
D O I
10.1109/ICJECE.2023.3275975
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This article presents an anomaly detection (AD) algorithm, robust AD for rural fixed wireless LTE (RAINFOREST), to address the difficulty of fault detection in LTE networks, specifically those that are rural and fixed wireless. We propose a hybrid AD method that uses network key performance indicators (KPIs), historical KPI forecasts, density-based spatial clustering of applications with noise (DBSCAN), and statistical analysis to detect anomalies. RAINFOREST outperformed benchmark AD methods and was able to detect faults in a rural commercial fixed wireless network earlier than existing LTE threshold-based alarms.
引用
收藏
页码:256 / 261
页数:6
相关论文
共 50 条
  • [21] Unsupervised Learning for Anomaly Detection of Electric Motors
    Son, Jonghwan
    Kim, Chayoung
    Jeong, Minjoong
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING, 2022, 23 (04) : 421 - 427
  • [22] Unsupervised Deep Anomaly Detection in Chest Radiographs
    Nakao, Takahiro
    Hanaoka, Shouhei
    Nomura, Yukihiro
    Murata, Masaki
    Takenaga, Tomomi
    Miki, Soichiro
    Watadani, Takeyuki
    Yoshikawa, Takeharu
    Hayashi, Naoto
    Abe, Osamu
    JOURNAL OF DIGITAL IMAGING, 2021, 34 (02) : 418 - 427
  • [23] Anomaly Detection by Recombining Gated Unsupervised Experts
    Schulze, Jan-Philipp
    Sperl, Philip
    Boettinger, Konstantin
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [24] Unsupervised Anomaly Detection in Data Quality Control
    Poon, Lex
    Farshidi, Siamak
    Li, Na
    Zhao, Zhiming
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 2327 - 2336
  • [25] An unsupervised anomaly detection framework for smart assisted living via growing neural gas networks
    Ciprian, Matteo
    Gadaleta, Matteo
    Rossi, Michele
    JOURNAL OF AMBIENT INTELLIGENCE AND SMART ENVIRONMENTS, 2024, 16 (03) : 365 - 387
  • [26] Unsupervised motion-based anomaly detection with graph attention networks for industrial robots labeling
    Han, Jinrui
    Chen, Zhen
    Zhou, Di
    Hu, Bing
    Xia, Tangbin
    Pan, Ershun
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 146
  • [27] The MVTec Anomaly Detection Dataset: A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection
    Paul Bergmann
    Kilian Batzner
    Michael Fauser
    David Sattlegger
    Carsten Steger
    International Journal of Computer Vision, 2021, 129 : 1038 - 1059
  • [28] The MVTec Anomaly Detection Dataset: A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection
    Bergmann, Paul
    Batzner, Kilian
    Fauser, Michael
    Sattlegger, David
    Steger, Carsten
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2021, 129 (04) : 1038 - 1059
  • [29] Online and Scalable Unsupervised Network Anomaly Detection Method
    Dromard, Juliette
    Roudiere, Gilles
    Owezarski, Philippe
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2017, 14 (01): : 34 - 47
  • [30] Coincident learning for unsupervised anomaly detection of scientific instruments
    Humble, Ryan
    Zhang, Zhe
    OShea, Finn
    Darve, Eric
    Ratner, Daniel
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (03):