Higher-order optimality conditions of robust Benson proper efficient solutions in uncertain vector optimization problems

被引:1
作者
Wang, Qilin [1 ]
Jin, Jing [1 ]
Zhai, Yuwen [1 ]
机构
[1] Chongqing Jiaotong Univ, Coll Math & Stat, Chongqing 400074, Peoples R China
基金
中国国家自然科学基金;
关键词
Uncertain vector optimization problems; Higher-order weak radial epiderivatives; Robust Benson proper efficient solutions; Higher-order optimality conditions; SET-VALUED OPTIMIZATION; DUALITY;
D O I
10.1007/s11590-023-02061-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this article, we study higher-order optimality conditions of robust Benson proper efficient solutions in uncertain vector optimization problems. One first introduces a new epiderivative of set-valued maps, the higher-order weak radial epiderivative. Then we investigate some of its properties. The concept of robust Benson proper effective solutions is proposed for uncertain vector optimization problems. In addition, applying the higher-order weak radial epiderivative, we establish the higher-order sufficient and necessary optimality conditions for the robust Benson proper effective solution in uncertain vector optimization problems without any convexity assumption.
引用
收藏
页码:1475 / 1490
页数:16
相关论文
共 24 条
  • [1] Aubin JP., 2009, SET-VALUED ANAL, DOI DOI 10.1007/978-0-8176-4848-0
  • [2] Duality in robust optimization: Primal worst equals dual best
    Beck, Amir
    Ben-Tal, Aharon
    [J]. OPERATIONS RESEARCH LETTERS, 2009, 37 (01) : 1 - 6
  • [3] IMPROVED DEFINITION OF PROPER EFFICIENCY FOR VECTOR MAXIMIZATION WITH RESPECT TO CONES
    BENSON, HP
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1979, 71 (01) : 232 - 241
  • [4] Characterizations of the Benson proper efficiency for nonconvex vector optimization
    Chen, GY
    Rong, WD
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1998, 98 (02) : 365 - 384
  • [5] Robust Necessary Optimality Conditions for Nondifferentiable Complex Fractional Programming with Uncertain Data
    Chen, Jiawei
    Al-Homidan, Suliman
    Ansari, Qamrul Hasan
    Li, Jun
    Lv, Yibing
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2021, 189 (01) : 221 - 243
  • [6] Optimality Conditions and Duality for Robust Nonsmooth Multiobjective Optimization Problems with Constraints
    Chen, Jiawei
    Koebis, Elisabeth
    Yao, Jen-Chih
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2019, 181 (02) : 411 - 436
  • [7] Characterizing Robust Solution Sets of Convex Programs under Data Uncertainty
    Jeyakumar, V.
    Lee, G. M.
    Li, G.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 164 (02) : 407 - 435
  • [8] GLOBAL OPTIMALITY CONDITIONS AND DUALITY THEOREMS FOR ROBUST OPTIMAL SOLUTIONS OF OPTIMIZATION PROBLEMS WITH DATA UNCERTAINTY, USING UNDERESTIMATORS
    Kerdkaew, Jutamas
    Wangkeeree, Rabian
    Wangkeeree, Rattanaporn
    [J]. NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2022, 12 (01): : 93 - 107
  • [9] A unified approach to uncertain optimization
    Klamroth, Kathrin
    Koebis, Elisabeth
    Schoebel, Anita
    Tammer, Christiane
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2017, 260 (02) : 403 - 420
  • [10] Köbis E, 2017, J NONLINEAR CONVEX A, V18, P1001