Entire sign-changing solutions to the fractional p-Laplacian equation involving critical nonlinearity

被引:0
|
作者
Zhang, Chunyan [1 ]
Ma, Pei [2 ]
Zheng, Tiantian [1 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Peoples R China
[2] Nanjing Forestry Univ, Coll Sci, Nanjing 210037, Peoples R China
关键词
Fractional p -Laplacian; Sign-changing solutions; Group invariant;
D O I
10.1016/j.na.2023.113346
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish the existence of multiple sign-changing solutions to the fractional p-Laplacian equation (-o)spu- |u|p*-2u = 0, inRN, by combining the minimax theory and group equivariant technique with the concentration compactness argument.& COPY; 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Mountain pass and linking type sign-changing solutions for nonlinear problems involving the fractional Laplacian
    Luo, Huxiao
    Tang, Xianhua
    Li, Shengjun
    BOUNDARY VALUE PROBLEMS, 2017,
  • [32] Existence of infinitely many solutions for fractional p-Laplacian Schrodinger-Kirchhoff type equations with sign-changing potential
    Zhang, Youpei
    Tang, Xianhua
    Zhang, Jian
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) : 569 - 586
  • [33] INFINITELY MANY SIGN-CHANGING SOLUTIONS FOR THE BREZIS-NIRENBERG PROBLEM INVOLVING THE FRACTIONAL LAPLACIAN
    Li, Lin
    Sun, Jijiang
    Tersian, Stepan
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2017, 20 (05) : 1146 - 1164
  • [34] Mountain pass and linking type sign-changing solutions for nonlinear problems involving the fractional Laplacian
    Huxiao Luo
    Xianhua Tang
    Shengjun Li
    Boundary Value Problems, 2017
  • [35] Least energy sign-changing solutions for a class of fractional (p, q)-Laplacian problems with critical growth in RN
    Cheng, Kun
    Feng, Shenghao
    Wang, Li
    Zhan, Yuangen
    AIMS MATHEMATICS, 2022, 8 (06): : 13325 - 13350
  • [36] SYMMETRY OF SINGULAR SOLUTIONS FOR A WEIGHTED CHOQUARD EQUATION INVOLVING THE FRACTIONAL p-LAPLACIAN
    Phuong Le
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (01) : 527 - 539
  • [37] Infinitely many sign-changing solutions for the Brézis-Nirenberg problem involving the fractional Laplacian
    Lin Li
    Jijiang Sun
    Stepan Tersian
    Fractional Calculus and Applied Analysis, 2017, 20 : 1146 - 1164
  • [38] On a Fractional p-Laplacian Equation with Critical Fractional Sobolev Exponent
    Ouarda Saifia
    Jean Vélin
    Mediterranean Journal of Mathematics, 2023, 20
  • [39] On a Fractional p-Laplacian Equation with Critical Fractional Sobolev Exponent
    Saifia, Ouarda
    Velin, Jean
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (04)
  • [40] Nodal Solutions for a Quasilinear Elliptic Equation Involving the p-Laplacian and Critical Exponents
    Deng, Yinbin
    Peng, Shuangjie
    Wang, Jixiu
    ADVANCED NONLINEAR STUDIES, 2018, 18 (01) : 17 - 40