Dependence of the asymptotic energy dissipation on third-order velocity scaling

被引:2
作者
Iyer, Kartik P. [1 ,2 ]
机构
[1] Michigan Technol Univ, Dept Phys, Houghton, MI 49931 USA
[2] Michigan Technol Univ, Dept Mech Engn Engn Mech, Houghton, MI 49931 USA
基金
美国国家科学基金会;
关键词
TURBULENCE; ONSAGER; 4/5-LAW; LAW;
D O I
10.1103/PhysRevFluids.8.L082601
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The asymptotic energy dissipation is connected to the third-order scaling of the longi-tudinal velocity increment magnitude in three-dimensional turbulence via the Kolmogorov 4/5 law. It is shown that the third-order longitudinal absolute velocity increment scaling should not exceed unity for anomalous dissipation to occur, that is for nonvanishing average dissipation in the inviscid limit-also known as the "zeroth law" of turbulence. Conversely, if the third-order longitudinal absolute velocity increment scaling exceeds unity, then the average dissipation must asymptotically vanish and the velocity increment field will becomes symmetric at least at the level of its skewness. This Letter highlights the importance of the third-order absolute velocity increment scaling in assessing the status of the zeroth law of turbulence.
引用
收藏
页数:7
相关论文
共 40 条
[1]  
Batchelor G.K., 1953, THEORY HOMOGENEOUS T
[2]   A Sufficient Condition for the Kolmogorov 4/5 Law for Stationary Martingale Solutions to the 3D Navier-Stokes Equations [J].
Bedrossian, Jacob ;
Zelati, Michele Coti ;
Punshon-Smith, Samuel ;
Weber, Franziska .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 367 (03) :1045-1075
[3]   Exponents of the structure functions in a low temperature helium experiment [J].
Belin, F ;
Tabeling, P ;
Willaime, H .
PHYSICA D-NONLINEAR PHENOMENA, 1996, 93 (1-2) :52-63
[4]   ONSAGER CONJECTURE ON THE ENERGY-CONSERVATION FOR SOLUTIONS OF EULER EQUATION [J].
CONSTANTIN, P ;
TITI, ES ;
WEINAN, F .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (01) :207-209
[5]   Direct numerical simulation of laboratory experiments in isotropic turbulence [J].
de Bruyn Kops, SM ;
Riley, JJ .
PHYSICS OF FLUIDS, 1998, 10 (09) :2125-2127
[6]   Transverse structure functions in high-Reynolds-number turbulence [J].
Dhruva, B ;
Tsuji, Y ;
Sreenivasan, KR .
PHYSICAL REVIEW E, 1997, 56 (05) :R4928-R4930
[7]  
Dhruva B. R., 2000, THESIS YALE U
[8]  
Drivas TD, 2022, PHILOS T R SOC A, V380, DOI DOI 10.1098/RSTA.2021.0033
[9]   An Onsager singularity theorem for Leray solutions of incompressible Navier-Stokes [J].
Drivas, Theodore D. ;
Eyink, Gregory L. .
NONLINEARITY, 2019, 32 (11) :4465-4482
[10]   Turbulent Cascade Direction and Lagrangian Time-Asymmetry [J].
Drivas, Theodore D. .
JOURNAL OF NONLINEAR SCIENCE, 2019, 29 (01) :65-88