Regularity for Double Phase Problems at Nearly Linear Growth

被引:21
|
作者
De Filippis, Cristiana [1 ]
Mingione, Giuseppe [1 ]
机构
[1] Univ Parma, Dipartimento SMFI, Parco Area Sci 53-A, I-43124 Parma, Italy
关键词
VARIATIONAL INTEGRALS; CONVEX FUNCTIONALS; MULTIPLE INTEGRALS; ELLIPTIC-EQUATIONS; MINIMIZERS; RELAXATION; DIRICHLET; MINIMA; BOUNDS;
D O I
10.1007/s00205-023-01907-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Minima of functionals of the type w . integral Omega[ |Dw| log(1 + |Dw|) + a(x)|Dw|(q) ] dx, 0 <= a(center dot). is an element of C-0,C-alpha, with Omega.subset of R-n, have locally Holder continuous gradient provided 1 < q < 1+ alpha/n.
引用
收藏
页数:50
相关论文
共 50 条
  • [31] Regularity for minimizers for functionals of double phase with variable exponents
    Ragusa, Maria Alessandra
    Tachikawa, Atsushi
    ADVANCES IN NONLINEAR ANALYSIS, 2020, 9 (01) : 710 - 728
  • [32] Interface regularity for semilinear one-phase problems
    Audrito, Alessandro
    Serra, Joaquim
    ADVANCES IN MATHEMATICS, 2022, 403
  • [33] Boundary Regularity in Variational Problems
    Kristensen, Jan
    Mingione, Giuseppe
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 198 (02) : 369 - 455
  • [34] SYMMETRY OF INTRINSICALLY SINGULAR SOLUTIONS OF DOUBLE PHASE PROBLEMS
    Biagi, Stefano
    Esposito, Francesco
    Vecchi, Eugenio
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2023, 36 (3-4) : 229 - 246
  • [35] Gradient estimates for Orlicz double-phase problems
    Baasandorj, Sumiya
    Byun, Sun-Sig
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2023, 24 (04) : 2215 - 2268
  • [37] Nonlinear obstacle problems with double phase in the borderline case
    Byun, Sun-Sig
    Cho, Yumi
    Oh, Jehan
    MATHEMATISCHE NACHRICHTEN, 2020, 293 (04) : 651 - 669
  • [38] Regularity Results for Bounded Solutions to Obstacle Problems with Non-standard Growth Conditions
    Gentile, Andrea
    Giova, Raffaella
    Torricelli, Andrea
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (06)
  • [39] Parametric superlinear double phase problems with singular term and critical growth on the boundary
    Crespo-Blanco, Angel
    Papageorgiou, Nikolaos S.
    Winkert, Patrick
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (04) : 2276 - 2298
  • [40] Identification of discontinuous parameters in double phase obstacle problems
    Zeng, Shengda
    Bai, Yunru
    Winkert, Patrick
    Yao, Jen-Chih
    ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01) : 1 - 22