Regularity for Double Phase Problems at Nearly Linear Growth

被引:37
作者
De Filippis, Cristiana [1 ]
Mingione, Giuseppe [1 ]
机构
[1] Univ Parma, Dipartimento SMFI, Parco Area Sci 53-A, I-43124 Parma, Italy
关键词
VARIATIONAL INTEGRALS; CONVEX FUNCTIONALS; MULTIPLE INTEGRALS; ELLIPTIC-EQUATIONS; MINIMIZERS; RELAXATION; DIRICHLET; MINIMA; BOUNDS;
D O I
10.1007/s00205-023-01907-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Minima of functionals of the type w . integral Omega[ |Dw| log(1 + |Dw|) + a(x)|Dw|(q) ] dx, 0 <= a(center dot). is an element of C-0,C-alpha, with Omega.subset of R-n, have locally Holder continuous gradient provided 1 < q < 1+ alpha/n.
引用
收藏
页数:50
相关论文
共 72 条
[11]   Lipschitz bounds for integral functionals with (p, q)-growth conditions [J].
Bella, Peter ;
Schaeffner, Mathias .
ADVANCES IN CALCULUS OF VARIATIONS, 2024, 17 (02) :373-390
[12]   ON THE REGULARITY OF MINIMIZERS FOR SCALAR INTEGRAL FUNCTIONALS WITH (p, q)-GROWTH [J].
Bella, Peter ;
Schaeffner, Mathias .
ANALYSIS & PDE, 2020, 13 (07) :2241-2257
[13]   Local Boundedness and Harnack Inequality for Solutions of Linear Nonuniformly Elliptic Equations [J].
Bella, Peter ;
Schaeffner, Mathias .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2021, 74 (03) :453-477
[14]   C1,α-solutions to non-autonomous anisotropic variational problems [J].
Bildhauer, M ;
Fuchs, M .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 24 (03) :309-340
[15]  
Bildhauer M, 2003, LECT NOTES MATH, V1818, P1
[16]  
Bildhauer M, 2001, CALC VAR PARTIAL DIF, V13, P537, DOI 10.1007/s005260100090
[17]   The effective bulk energy of the relaxed energy of multiple integrals below the growth exponent [J].
Bouchitte, G ;
Fonseca, I ;
Maly, J .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1998, 128 :463-479
[18]   On a Range of Exponents for Absence of Lavrentiev Phenomenon for Double Phase Functionals [J].
Bulicek, Miroslav ;
Gwiazda, Piotr ;
Skrzeczkowski, Jakub .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2022, 246 (01) :209-240
[19]   REGULARITY RESULTS FOR GENERALIZED DOUBLE PHASE FUNCTIONALS [J].
Byun, Sun-Sig ;
Oh, Jehan .
ANALYSIS & PDE, 2020, 13 (05) :1269-1300
[20]   Regularity for Double Phase Variational Problems [J].
Colombo, Maria ;
Mingione, Giuseppe .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 215 (02) :443-496