Clinically Similar Clusters of Daily Continuous Glucose Monitoring Profiles: Tracking the Progression of Glycemic Control Over Time

被引:4
作者
Kovatchev, Boris [1 ]
Lobo, Benjamin [1 ,2 ]
机构
[1] Univ Virginia, Ctr Diabet Technol, Sch Med, 560 Ray C Hunt Dr, Charlottesville, VA 22903 USA
[2] Univ Virginia, Sch Data Sci, Charlottesville, VA 22903 USA
关键词
Continuous glucose monitoring (CGM); Time in range (TIR); Glucose variability; CGM metrics; Automated insulin delivery (AID); INSULIN INJECTIONS; RANDOMIZED-TRIAL; ADULTS; VARIABILITY; METRICS; HYPOGLYCEMIA; RISK;
D O I
10.1089/dia.2023.0117
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: The adoption of continuous glucose monitoring (CGM) results in vast amounts of data, but their interpretation is still more art than exact science. The International Consensus on Time in Range (TIR) proposed the widely accepted TIR system of metrics, which we now take forward by introducing a finite and fixed set of clinically similar clusters (CSCs), such that the TIR metrics of daily CGM profiles within a cluster are homogeneous.Methods: CSC definition and validation used 204,710 daily CGM profiles in health, and types 1 and 2 diabetes (T1D and T2D) on different treatments. The CSCs were defined using 23,916 daily CGM profiles (Training set), and the final fixed set of CSCs was obtained using another 37,758 profiles (Validation set). The Testing set (143,036 profiles) was used to establish the robustness and generalizability of CSCs.Results: The final set of CSCs contains 32 clusters. Any daily CGM profile was classifiable to a single CSC, which approximated common glycemic metrics of the daily CGM profile, as evidenced by regression analyses with 0 intercept (R-squares & GE;0.83, e.g., correlation & GE;0.91), for all TIR and several other metrics. The CSCs distinguished CGM profiles in health, T2D, and T1D on different treatments, and allowed tracking of daily changes in a person's glycemic control over time.Conclusion: Daily CGM profiles can be classified into one of 32 prefixed CSCs, which enables a host of applications, for example, tabulated data interpretation and algorithmic approaches to treatment, database indexing, pattern recognition, and tracking disease progression.
引用
收藏
页码:519 / 528
页数:10
相关论文
共 44 条
  • [1] REPLACE-BG: A Randomized Trial Comparing Continuous Glucose Monitoring With and Without Routine Blood Glucose Monitoring in Adults With Well-Controlled Type 1 Diabetes
    Aleppo, Grazia
    Ruedy, Katrina J.
    Riddlesworth, Tonya D.
    Kruger, Davida F.
    Peters, Anne L.
    Hirsch, Irl
    Bergenstal, Richard M.
    Toschi, Elena
    Ahmann, Andrew J.
    Shah, Viral N.
    Rickels, Michael R.
    Bode, Bruce W.
    Philis-Tsimikas, Athena
    Pop-Busui, Rodica
    Rodriguez, Henry
    Eyth, Emily
    Bhargava, Anuj
    Kollman, Craig
    Beck, Roy W.
    [J]. DIABETES CARE, 2017, 40 (04) : 538 - 545
  • [2] Calculating the Mean Amplitude of Glycemic Excursion from Continuous Glucose Monitoring Data: An Automated Algorithm
    Baghurst, Peter A.
    [J]. DIABETES TECHNOLOGY & THERAPEUTICS, 2011, 13 (03) : 296 - 302
  • [3] Continuous glucose monitoring and metrics for clinical trials: an international consensus statement
    Battelino, Tadej
    Alexander, Charles M.
    Amiel, Stephanie A.
    Arreaza-Rubin, Guillermo
    Beck, Roy W.
    Bergenstal, Richard M.
    Buckingham, Bruce A.
    Carroll, James
    Ceriello, Antonio
    Chow, Elaine
    Choudhary, Pratik
    Close, Kelly
    Danne, Thomas
    Dutta, Sanjoy
    Gabbay, Robert
    Garg, Satish
    Heverly, Julie
    Hirsch, Irl B.
    Kader, Tina
    Kenney, Julia
    Kovatchev, Boris
    Laffel, Lori
    Maahs, David
    Mathieu, Chantal
    Mauricio, Didac
    Nimri, Revital
    Nishimura, Rimei
    Scharf, Mauro
    Del Prato, Stefano
    Renard, Eric
    Rosenstock, Julio
    Saboo, Banshi
    Ueki, Kohjiro
    Umpierrez, Guillermo E.
    Weinzimer, Stuart A.
    Phillip, Moshe
    [J]. LANCET DIABETES & ENDOCRINOLOGY, 2023, 11 (01) : 42 - 57
  • [4] Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range
    Battelino, Tadej
    Danne, Thomas
    Bergenstal, Richard M.
    Amiel, Stephanie A.
    Beck, Roy
    Biester, Torben
    Bosi, Emanuele
    Buckingham, Bruce A.
    Cefalu, William T.
    Close, Kelly L.
    Cobelli, Claudio
    Dassau, Eyal
    DeVries, J. Hans
    Donaghue, Kim C.
    Dovc, Klemen
    Doyle, Francis J.
    Garg, Satish
    Grunberger, George
    Heller, Simon
    Heinemann, Lutz
    Hirsch, Irl B.
    Hovorka, Roman
    Jia, Weiping
    Kordonouri, Olga
    Kovatchev, Boris
    Kowalski, Aaron
    Laffel, Lori
    Levine, Brian
    Mayorov, Alexander
    Mathieu, Chantal
    Murphy, Helen R.
    Nimri, Revital
    Norgaard, Kirsten
    Parkin, Christopher G.
    Renard, Eric
    Rodbard, David
    Saboo, Banshi
    Schatz, Desmond
    Stoner, Keaton
    Urakami, Tatsuiko
    Weinzimer, Stuart A.
    Phillip, Moshe
    [J]. DIABETES CARE, 2019, 42 (08) : 1593 - 1603
  • [5] Continuous Glucose Monitoring Versus Usual Care in Patients With Type 2 Diabetes Receiving Multiple Daily Insulin Injections A Randomized Trial
    Beck, Roy W.
    Riddlesworth, Tonya D.
    Ruedy, Katrina
    Ahmann, Andrew
    Haller, Stacie
    Kruger, Davida
    McGill, Janet B.
    Polonsky, William
    Price, David
    Aronoff, Stephen
    Aronson, Ronnie
    Toschi, Elena
    Kollman, Craig
    Bergenstal, Richard
    [J]. ANNALS OF INTERNAL MEDICINE, 2017, 167 (06) : 365 - +
  • [6] Effect of Continuous Glucose Monitoring on Glycemic Control in Adults With Type 1 Diabetes Using Insulin Injections The DIAMOND Randomized Clinical Trial
    Beck, Roy W.
    Riddlesworth, Tonya
    Ruedy, Katrina
    Ahmann, Andrew
    Bergenstal, Richard
    Haller, Stacie
    Kollman, Craig
    Kruger, Davida
    McGill, Janet B.
    Polonsky, William
    Toschi, Elena
    Wolpert, Howard
    Price, David
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 317 (04): : 371 - 378
  • [7] Glucose Management Indicator (GMI): A New Term for Estimating A1C From Continuous Glucose Monitoring
    Bergenstal, Richard M.
    Beck, Roy W.
    Close, Kelly L.
    Grunberger, George
    Sacks, David B.
    Kowalski, Aaron
    Brown, Adam S.
    Heinemann, Lutz
    Aleppo, Grazia
    Ryan, Donna B.
    Riddlesworth, Tonya D.
    Cefalu, William T.
    [J]. DIABETES CARE, 2018, 41 (11) : 2275 - 2280
  • [8] Recommendations for Standardizing Glucose Reporting and Analysis to Optimize Clinical Decision Making in Diabetes: The Ambulatory Glucose Profile (AGP)
    Bergenstal, Richard M.
    Ahmann, Andrew J.
    Bailey, Timothy
    Beck, Roy W.
    Bissen, Joan
    Buckingham, Bruce
    Deeb, Larry
    Dolin, Robert H.
    Garg, Satish K.
    Goland, Robin
    Hirsch, Irl B.
    Klonoff, David C.
    Kruger, Davida F.
    Matfin, Glenn
    Mazze, Roger S.
    Olson, Beth A.
    Parkin, Christopher
    Peters, Anne
    Powers, Margaret A.
    Rodriguez, Henry
    Southerland, Phil
    Strock, Ellie S.
    Tamborlane, William
    Wesley, David M.
    [J]. DIABETES TECHNOLOGY & THERAPEUTICS, 2013, 15 (03) : 198 - 211
  • [9] Impact of a Novel Diabetes Support System on a Cohort of Individuals With Type 1 Diabetes Treated With Multiple Daily Injections: A Multicenter Randomized Study
    Bisio, Alessandro
    Anderson, Stacey
    Norlander, Lisa
    O'Malley, Grenye
    Robic, Jessica
    Ogyaadu, Selassie
    Hsu, Liana
    Levister, Camilla
    Ekhlaspour, Laya
    Lam, David W.
    Levy, Carol
    Buckingham, Bruce
    Breton, Marc D.
    [J]. DIABETES CARE, 2022, 45 (01) : 186 - 193
  • [10] One Year Real-World Use of the Control-IQ Advanced Hybrid Closed-Loop Technology
    Breton, Marc D.
    Kovatchev, Boris P.
    [J]. DIABETES TECHNOLOGY & THERAPEUTICS, 2021, 23 (09) : 601 - 608