Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition

被引:13
作者
Bouchard, Catherine [1 ,2 ]
Wiesner, Theresa [1 ,2 ]
Deschenes, Andreanne [2 ]
Bilodeau, Anthony [1 ,2 ]
Turcotte, Benoit [1 ,2 ]
Gagne, Christian [1 ,3 ]
Lavoie-Cardinal, Flavie [1 ,2 ,4 ]
机构
[1] Univ Laval, Inst Intelligence & Data IID, Quebec City, PQ, Canada
[2] CERVO Brain Res Ctr, Quebec City, PQ, Canada
[3] Univ Laval, Dept Genie Elect & Genie Informat, Quebec City, PQ, Canada
[4] Univ Laval, Dept Psychiat & Neurosci, Quebec City, PQ, Canada
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
SEGMENTATION;
D O I
10.1038/s42256-023-00689-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Super-resolution fluorescence microscopy methods enable the characterization of nanostructures in living and fixed biological tissues. However, they require the adjustment of multiple imaging parameters while attempting to satisfy conflicting objectives, such as maximizing spatial and temporal resolution while minimizing light exposure. To overcome the limitations imposed by these trade-offs, post-acquisition algorithmic approaches have been proposed for resolution enhancement and image-quality improvement. Here we introduce the task-assisted generative adversarial network (TA-GAN), which incorporates an auxiliary task (for example, segmentation, localization) closely related to the observed biological nanostructure characterization. We evaluate how the TA-GAN improves generative accuracy over unassisted methods, using images acquired with different modalities such as confocal, bright-field, stimulated emission depletion and structured illumination microscopy. The TA-GAN is incorporated directly into the acquisition pipeline of the microscope to predict the nanometric content of the field of view without requiring the acquisition of a super-resolved image. This information is used to automatically select the imaging modality and regions of interest, optimizing the acquisition sequence by reducing light exposure. Data-driven microscopy methods like the TA-GAN will enable the observation of dynamic molecular processes with spatial and temporal resolutions that surpass the limits currently imposed by the trade-offs constraining super-resolution microscopy. Algorithmic super-resolution in the context of fluorescence microscopy is challenging due to the difficulty to reliably represent biological nanostructures in synthetically generated images. Bouchard and colleagues propose a deep learning model for live-cell imaging that can leverage auxiliary microscopy imaging tasks to guide and enhance reconstruction, while preserving the biological features of interest.
引用
收藏
页码:830 / +
页数:25
相关论文
共 60 条
[1]  
[Anonymous], INT C PATTERN RECOGN, DOI DOI 10.48550/ARXIV.1706.05098
[2]  
[Anonymous], 2019, 2019 11 INT S ADV TO
[3]   Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction [J].
Belthangady, Chinmay ;
Royer, Loic A. .
NATURE METHODS, 2019, 16 (12) :1215-1225
[4]   Microscopy analysis neural network to solve detection, enumeration and segmentation from image-level annotations [J].
Bilodeau, Anthony ;
Delmas, Constantin V. L. ;
Parent, Martin ;
De Koninck, Paul ;
Durand, Audrey ;
Lavoie-Cardinal, Flavie .
NATURE MACHINE INTELLIGENCE, 2022, 4 (05) :455-+
[5]  
Bouchard C., 2023, CONFOCAL STED LIVE F, DOI [10.5281/zenodo.7908914, DOI 10.5281/ZENODO.7908914]
[6]  
Bouchard C., 2023, FLCLABTA GAN TA GAN, DOI [10.5281/zenodo.7908818, DOI 10.5281/ZENODO.7908818]
[7]   Three-dimensional residual channel attention networks denoise and sharpen fluorescence microscopy image volumes [J].
Chen, Jiji ;
Sasaki, Hideki ;
Lai, Hoyin ;
Su, Yijun ;
Liu, Jiamin ;
Wu, Yicong ;
Zhovmer, Alexander ;
Combs, Christian A. ;
Rey-Suarez, Ivan ;
Chang, Hung-Yu ;
Huang, Chi Chou ;
Li, Xuesong ;
Guo, Min ;
Nizambad, Srineil ;
Upadhyaya, Arpita ;
Lee, Shih-Jong J. ;
Lucas, Luciano A. G. ;
Shroff, Hari .
NATURE METHODS, 2021, 18 (06) :678-+
[8]   Distribution Matching Losses Can Hallucinate Features in Medical Image Translation [J].
Cohen, Joseph Paul ;
Luck, Margaux ;
Honari, Sina .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT I, 2018, 11070 :529-536
[9]   A machine learning approach for online automated optimization of super-resolution optical microscopy [J].
Durand, Audrey ;
Wiesner, Theresa ;
Gardner, Marc-Andre ;
Robitaille, Louis-Emile ;
Bilodeau, Anthony ;
Gagne, Christian ;
De Koninck, Paul ;
Lavoie-Cardinal, Flavie .
NATURE COMMUNICATIONS, 2018, 9
[10]   U-Net: deep learning for cell counting, detection, and morphometry [J].
Falk, Thorsten ;
Mai, Dominic ;
Bensch, Robert ;
Cicek, Oezguen ;
Abdulkadir, Ahmed ;
Marrakchi, Yassine ;
Boehm, Anton ;
Deubner, Jan ;
Jaeckel, Zoe ;
Seiwald, Katharina ;
Dovzhenko, Alexander ;
Tietz, Olaf ;
Dal Bosco, Cristina ;
Walsh, Sean ;
Saltukoglu, Deniz ;
Tay, Tuan Leng ;
Prinz, Marco ;
Palme, Klaus ;
Simons, Matias ;
Diester, Ilka ;
Brox, Thomas ;
Ronneberger, Olaf .
NATURE METHODS, 2019, 16 (01) :67-+