Data-Driven Spectral Submanifold Reduction for Nonlinear Optimal Control of High-Dimensional Robots

被引:13
作者
Alora, John Irvin [1 ]
Cenedese, Mattia [2 ]
Schmerling, Edward [1 ]
Haller, George [2 ]
Pavone, Marco [1 ]
机构
[1] Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA
[2] Swiss Fed Inst Technol, Inst Mech Syst, CH-8092 Zurich, Switzerland
来源
2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA | 2023年
关键词
D O I
10.1109/ICRA48891.2023.10160418
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Modeling and control of high-dimensional, nonlinear robotic systems remains a challenging task. While various model- and learning-based approaches have been proposed to address these challenges, they broadly lack generalizability to different control tasks and rarely preserve the structure of the dynamics. In this work, we propose a new, data-driven approach for extracting control-oriented, low-dimensional models from data using Spectral Submanifold Reduction (SSMR). In contrast to other data-driven methods which fit dynamical models to training trajectories, we identify the dynamics on generic, low-dimensional attractors embedded in the full phase space of the robotic system. This allows us to obtain computationally-tractable models for control which preserve the system's dominant dynamics and better track trajectories radically different from the training data. We demonstrate the superior performance and generalizability of SSMR in dynamic trajectory tracking tasks vis-a-vis the state of the art, including Koopman operator-based approaches.
引用
收藏
页码:2627 / 2633
页数:7
相关论文
共 27 条
[1]  
Allard J, 2007, STUD HEALTH TECHNOL, V125, P13
[2]  
Alora J. I., 2022, ARXIV220905712
[3]  
Bruder D, 2019, ROBOTICS: SCIENCE AND SYSTEMS XV
[4]  
Bruder D, 2019, IEEE INT CONF ROBOT, P6244, DOI [10.1109/icra.2019.8793766, 10.1109/ICRA.2019.8793766]
[5]   Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control [J].
Brunton, Steven L. ;
Brunton, Bingni W. ;
Proctor, Joshua L. ;
Kutz, J. Nathan .
PLOS ONE, 2016, 11 (02)
[6]   Data-driven nonlinear model reduction to spectral submanifolds in mechanical systems [J].
Cenedese, M. ;
Axas, J. ;
Yang, H. ;
Eriten, M. ;
Haller, G. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 380 (2229)
[7]  
Cenedese M., 2022, ARXIV220414169
[8]   Data-driven modeling and prediction of non-linearizable dynamics via spectral submanifolds [J].
Cenedese, Mattia ;
Axas, Joar ;
Baeuerlein, Bastian ;
Avila, Kerstin ;
Haller, George .
NATURE COMMUNICATIONS, 2022, 13 (01)
[9]   Software toolkit for modeling, simulation, and control of soft robots [J].
Coevoet, E. ;
Morales-Bieze, T. ;
Largilliere, F. ;
Zhang, Z. ;
Thieffry, M. ;
Sanz-Lopez, M. ;
Carrez, B. ;
Marchal, D. ;
Goury, O. ;
Dequidt, J. ;
Duriez, C. .
ADVANCED ROBOTICS, 2017, 31 (22) :1208-1224
[10]  
Cranmer M., 2020, Lagrangian neural networks