VISCOSITY SOLUTIONS FOR OBSTACLE PROBLEMS ON WASSERSTEIN SPACE

被引:10
作者
Talbi, Mehdi [1 ]
Touzi, Nizar [1 ]
Zhang, Jianfeng [2 ]
机构
[1] Ecole Polytech, CMAP, F-91128 Palaiseau, France
[2] Univ Southern Calif, Dept Math, Los Angeles, CA 90089 USA
关键词
mean field optimal stopping; obstacle problems; viscosity solutions; NONLINEAR 2ND-ORDER EQUATIONS; OPTIMAL STOCHASTIC-CONTROL; INFINITE DIMENSIONS;
D O I
10.1137/22M1488119
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is a continuation of our accompanying paper [M. Talbi, N. Touzi, and J. Zhang, Dynamic Programming Equation for the Mean Field Optimal Stopping Problem, https:// arxiv.org/abs/2103.05736, 2021], where we characterized the mean field optimal stopping problem by an obstacle equation on the Wasserstein space of probability measures, provided that the value function is smooth. Our purpose here is to establish this characterization under weaker regularity requirements. We shall define a notion of viscosity solutions for such an equation and prove existence, stability, and the comparison principle.
引用
收藏
页码:1712 / 1736
页数:25
相关论文
共 50 条
[31]   COMPARISON OF VISCOSITY SOLUTIONS OF SEMILINEAR PATH-DEPENDENT PDEs [J].
Ren, Zhenjie ;
Touzi, Nizar ;
Zhang, Jianfeng .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2020, 58 (01) :277-302
[32]   ON VISCOSITY SOLUTIONS OF SPACE-FRACTIONAL DIFFUSION EQUATIONS OF CAPUTO TYPE [J].
Namba, Tokinaga ;
Rybka, Piotr .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (01) :653-681
[33]   FLUX-LIMITED AND CLASSICAL VISCOSITY SOLUTIONS FOR REGIONAL CONTROL PROBLEMS [J].
Barles, G. ;
Briani, A. ;
Chasseigne, E. ;
Imbert, C. .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2018, 24 (04) :1881-1906
[34]   LEVEL SETS OF VISCOSITY SOLUTIONS - SOME APPLICATIONS TO FRONTS AND RENDEZVOUS PROBLEMS [J].
FALCONE, M ;
GIORGI, T ;
LORETI, P .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1994, 54 (05) :1335-1354
[35]   Regularity Results for Bounded Solutions to Obstacle Problems with Non-standard Growth Conditions [J].
Gentile, Andrea ;
Giova, Raffaella ;
Torricelli, Andrea .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (06)
[36]   Existence, uniqueness and regularity of solutions to systems of nonlocal obstacle problems related to optimal switching [J].
Lundstrom, Niklas L. P. ;
Olofsson, Marcus ;
Onskog, Thomas .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 475 (01) :13-31
[37]   Regularity Results for Bounded Solutions to Obstacle Problems with Non-standard Growth Conditions [J].
Andrea Gentile ;
Raffaella Giova ;
Andrea Torricelli .
Mediterranean Journal of Mathematics, 2022, 19
[38]   HAMILTON-JACOBI EQUATIONS IN THE WASSERSTEIN SPACE [J].
Gangbo, Wilfrid ;
Truyen Nguyen ;
Tudorascu, Adrian .
METHODS AND APPLICATIONS OF ANALYSIS, 2008, 15 (02) :155-183
[39]   ON VISCOSITY SOLUTIONS OF PATH DEPENDENT PDES [J].
Ekren, Ibrahim ;
Keller, Christian ;
Touzi, Nizar ;
Zhang, Jianfeng .
ANNALS OF PROBABILITY, 2014, 42 (01) :204-236
[40]   Viscosity solutions to first order path-dependent Hamilton-Jacobi-Bellman equations in Hilbert space [J].
Zhou, Jianjun .
AUTOMATICA, 2022, 142