Cooling, heating and power system

被引:1
作者
Chen, Tzu-Chia [1 ]
Rashidov, Rustam [2 ]
Treve, Mark [3 ]
Mahdi, Ahmed B. [4 ]
Hammid, Ali Thaeer [5 ]
Jalil, Abduladheem Turki [6 ,7 ]
Shamel, Ali [8 ]
机构
[1] Ming Chi Univ Technol, Dept Ind Engn & Management, 84 Gungjuan Rd, New Taipei City 243303, Taiwan
[2] Tashkent State Dent Inst, Dept Hosp orthoped Dent, Makhtumkuli St 103, Tashkent 100047, Uzbekistan
[3] Walailak Univ, Sch Languages & Gen Educ, Nakhon Si Thammarat, Thailand
[4] Al Mustaqbal Univ Coll, Anesthesia Tech Dept, Babylon, Iraq
[5] Imam Jaafar Al Sadiq Univ, Fac Informat Technol, Comp Engn Tech Dept, Baghdad, Iraq
[6] Yanka Kupala State Univ Grodno, Fac Biol & Ecol, Grodno 230023, BELARUS
[7] Islamic Univ, Coll Tech Engn, Najaf, Iraq
[8] Islamic Azad Univ, Dept Chem, Ardebil Branch, Ardebil, Iran
关键词
environmental analysis; linear parabolic collector; heating and power system; combined cooling; thermal analysis; RENEWABLE ENERGY-SOURCES; THERMOECONOMIC ANALYSIS; SOLAR-ENERGY; EXERGY; SECTOR; PLANTS;
D O I
10.1093/ijlct/ctac122
中图分类号
O414.1 [热力学];
学科分类号
摘要
Systems of cogeneration of cooling, heating and electric power with renewable energy sources are a very suitable solution for the independency of fossil fuels and reducing the emission of environmental pollutants. In this research, an internal combustion engine with a boiler and a linear parabolic concentrating collector has been used to realize the production of electrical and thermal energy. That the internal combustion engine is responsible for the production of electric power, which is responsible for the thermal energy by the concentrated linear collector with the boiler and the heat exchanger. Due to the need for thermal energy at different times, a thermal storage tank has been used in such a way that the thermal energy produced by the solar collector and boiler is stored in the tank to supply the load at the required times. The results show that the total cost of final products for one day of the hottest month of summer in the proposed thermal power plant with fossil fuel will be $69.3 and $63.5, respectively, and for 1 day of the coldest month of winter, the total cost of producing final products in the proposed and fossil system will be $31.6 and $28.5, respectively.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [41] Thermoeconomic analysis of an integrated combined cooling heating and power system with biomass gasification
    Yang, Kun
    Zhu, Neng
    Ding, Yan
    Chang, Chen
    Yuan, Tianhao
    ENERGY CONVERSION AND MANAGEMENT, 2018, 171 : 671 - 682
  • [42] Study on different heat supplementation strategies for a combined cooling, heating and power system
    Huan Lei
    Han Dongjiang
    Yang Jinfu
    Tang Changliang
    Long Hao
    APPLIED THERMAL ENGINEERING, 2018, 144 : 558 - 570
  • [43] Discussion on Performance Evaluation Method of Distributed Combined Cooling, Heating, and Power System
    Shao, Youyuan
    Chen, Baiman
    Xiao, Hanmin
    Qin, Frank G. F.
    JOURNAL OF THERMAL SCIENCE, 2019, 28 (06) : 1212 - 1220
  • [44] RESEARCH ON OPTIMIZATION OF COOLING,HEATING AND POWER SYSTEM WITH SOLAR ENERGY WITH WATER CONSTRAINTS
    Li W.
    Kuang H.
    Xu Y.
    Wang X.
    Liu K.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2023, 44 (01): : 94 - 100
  • [45] RESEARCH ON COMBINED SIMULATION AND OPTIMIZATION OF COOLING,HEATING AND POWER SYSTEM WITH SOLAR ENERGY
    Kuang H.
    Li W.
    Wang X.
    Xu Y.
    Liu K.
    Tan J.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2023, 44 (05): : 80 - 87
  • [46] Quantitative sustainability evaluations of hybrid combined cooling, heating, and power schemes integrated with solar technologies
    Wang, Jiangjiang
    Zhou, Yuan
    Lior, Noam
    Zhang, Guoqing
    ENERGY, 2021, 231
  • [47] Hybrid-cooling, combined cooling, heating, and power systems
    Fumo, N.
    Mago, P. J.
    Chamra, L. M.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL OF POWER AND ENERGY, 2009, 223 (A5) : 487 - 495
  • [48] Multi-objective optimization and improvement of multi-energy combined cooling, heating and power system based on system simplification
    Zhao, Xiangming
    Guo, Jianxiang
    He, Maogang
    RENEWABLE ENERGY, 2023, 217
  • [49] Optimization of Operation Strategies for a Combined Cooling, Heating and Power System based on Adiabatic Compressed Air Energy Storage
    Chen, Shang
    Zhu, Tong
    Gan, Zhongxue
    Zhu, Xiaojun
    Liu, Liuchen
    JOURNAL OF THERMAL SCIENCE, 2020, 29 (05) : 1135 - 1148
  • [50] Performance analysis and optimization of a combined cooling, heating and power system based on active regulation of thermal energy storage
    Chu, Shangling
    Zhang, Heng
    Chen, Haiping
    ENERGY, 2024, 312