The verbalization of numbers: An explainable framework for tourism online reviews

被引:4
作者
De Nicolo, Francesco [1 ,2 ]
Bellantuono, Loredana [3 ,4 ]
Borzi, Dario [5 ]
Bregonzio, Matteo [5 ]
Cilli, Roberto [2 ]
De Marco, Leone [5 ]
Lombardi, Angela [2 ,4 ]
Pantaleo, Ester [2 ,4 ]
Petruzzellis, Luca [2 ]
Shashaj, Ariona [6 ]
Tangaro, Sabina [4 ,7 ]
Monaco, Alfonso [4 ]
Amoroso, Nicola [4 ,8 ]
Bellotti, Roberto [2 ,4 ]
机构
[1] Politecn Bari, Dipartimento Ingn Elettr & Informaz, Bari, Italy
[2] Univ Bari AldoMoro, Dipartimento Interateneo Fis, Bari, Italy
[3] Univ Bari Aldo Moro, Dipartimento Sci Med Base, Neurosci & Organi Senso, Bari, Italy
[4] Ist Nazl Fis Nucl, Sez Bari, Bari, Italy
[5] 3rdPlace SRL, Milan, Italy
[6] Network Contacts SRL, Molfetta, Italy
[7] Univ Bari Aldo Moro, Dipartimento Sci Suolo & Pianta & Alimenti, Bari, Italy
[8] Univ Bari Aldo Moro, Dipartimento Farm & Sci Farmaco, Bari, Italy
来源
INTERNATIONAL JOURNAL OF ENGINEERING BUSINESS MANAGEMENT | 2023年 / 15卷
关键词
Tourism intelligence; explainable artificial intelligence; sentiment analysis; machine learning; WORD-OF-MOUTH; USER-GENERATED CONTENT; AUTOMATED TEXT ANALYSIS; SOCIAL MEDIA; SENTIMENT ANALYSIS; GUEST EXPERIENCE; MODERATING ROLE; IMPACT; PRODUCT; HOTELS;
D O I
10.1177/18479790231151913
中图分类号
F [经济];
学科分类号
02 ;
摘要
Online reviews have been found very useful in decision-making. It is important to design and implement accurate systems to analyze the reviews and, based on textual information, predict their ratings. Given the different sources, languages and evaluating systems, intelligent systems are needed to use textual and numerical reviews to better understand the evaluation of the tourist experience and derive useful information to improve the offer. This paper aims to present an eXplainable Artificial Intelligence framework that contributes to the discussion on numerical and textual evaluations of the hospitality experience. It combines sentiment analysis and machine learning to accurately model and explain the evaluation of the tourist experience. The main findings are that review ratings should be used with caution and accompanied by a sentiment evaluation and explainability plays a central role in identifying which are the key concepts of positive or negative ratings, providing invaluable intelligence about the tourist experience.
引用
收藏
页数:16
相关论文
共 109 条
  • [1] An information-theoretic perspective of tf-idf measures
    Aizawa, A
    [J]. INFORMATION PROCESSING & MANAGEMENT, 2003, 39 (01) : 45 - 65
  • [2] Tweeting with the Stars: Automated Text Analysis of the Effect of Celebrity Social Media Communications on Consumer Word of Mouth
    Aleti, Torgeir
    Pallant, Jason I.
    Tuan, Annamaria
    van Laer, Tom
    [J]. JOURNAL OF INTERACTIVE MARKETING, 2019, 48 : 17 - 32
  • [3] A Roadmap towards Breast Cancer Therapies Supported by Explainable Artificial Intelligence
    Amoroso, Nicola
    Pomarico, Domenico
    Fanizzi, Annarita
    Didonna, Vittorio
    Giotta, Francesco
    La Forgia, Daniele
    Latorre, Agnese
    Monaco, Alfonso
    Pantaleo, Ester
    Petruzzellis, Nicole
    Tamborra, Pasquale
    Zito, Alfredo
    Lorusso, Vito
    Bellotti, Roberto
    Massafra, Raffaella
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (11):
  • [4] "Do We Believe in TripAdvisor?" Examining Credibility Perceptions and Online Travelers' Attitude toward Using User-Generated Content
    Ayeh, Julian K.
    Au, Norman
    Law, Rob
    [J]. JOURNAL OF TRAVEL RESEARCH, 2013, 52 (04) : 437 - 452
  • [5] Baccianella S, 2009, LECT NOTES COMPUT SC, V5478, P461, DOI 10.1007/978-3-642-00958-7_41
  • [6] Hybrid attribute based sentiment classification of online reviews for consumer intelligence
    Bansal, Barkha
    Srivastava, Sangeet
    [J]. APPLIED INTELLIGENCE, 2019, 49 (01) : 137 - 149
  • [7] Principles and Practice of Explainable Machine Learning
    Belle, Vaishak
    Papantonis, Ioannis
    [J]. FRONTIERS IN BIG DATA, 2021, 4
  • [8] Uniting the Tribes: Using Text for Marketing Insight
    Berger, Jonah
    Humphreys, Ashlee
    Ludwig, Stephan
    Moe, Wendy W.
    Netzer, Oded
    Schweidel, David A.
    [J]. JOURNAL OF MARKETING, 2020, 84 (01) : 1 - 25
  • [9] SMOTE for high-dimensional class-imbalanced data
    Blagus, Rok
    Lusa, Lara
    [J]. BMC BIOINFORMATICS, 2013, 14
  • [10] Breiman L., 2017, Classification and regression trees, DOI [10.1201/9781315139470-8, DOI 10.1201/9781315139470-8]