MSHF: A Multi-Source Heterogeneous Fundus (MSHF) Dataset for Image Quality Assessment

被引:23
作者
Jin, Kai [1 ]
Gao, Zhiyuan [1 ]
Jiang, Xiaoyu [2 ]
Wang, Yaqi [3 ]
Ma, Xiaoyu [4 ]
Li, Yunxiang [5 ]
Ye, Juan [1 ]
机构
[1] Zhejiang Univ, Affiliated Hosp 2, Zhejiang Prov Clin Res Ctr Eye Dis, Zhejiang Prov Key Lab Ophthalmol,Eye Ctr,Sch Med,Z, Hangzhou 310009, Zhejiang, Peoples R China
[2] Zhejiang Univ, Coll Control Sci & Engn, Hangzhou 310027, Peoples R China
[3] Commun Univ Zhejiang, Coll Media, Hangzhou 310018, Peoples R China
[4] Commun Univ Zhejiang, Inst Intelligent Media, Hangzhou 310018, Peoples R China
[5] Hangzhou Dianzi Univ, Coll Comp Sci & Technol, Hangzhou 310018, Peoples R China
关键词
D O I
10.1038/s41597-023-02188-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Image quality assessment (IQA) is significant for current techniques of image-based computer-aided diagnosis, and fundus imaging is the chief modality for screening and diagnosing ophthalmic diseases. However, most of the existing IQA datasets are single-center datasets, disregarding the type of imaging device, eye condition, and imaging environment. In this paper, we collected a multi-source heterogeneous fundus (MSHF) database. The MSHF dataset consisted of 1302 high-resolution normal and pathologic images from color fundus photography (CFP), images of healthy volunteers taken with a portable camera, and ultrawide-field (UWF) images of diabetic retinopathy patients. Dataset diversity was visualized with a spatial scatter plot. Image quality was determined by three ophthalmologists according to its illumination, clarity, contrast and overall quality. To the best of our knowledge, this is one of the largest fundus IQA datasets and we believe this work will be beneficial to the construction of a standardized medical image database.
引用
收藏
页数:6
相关论文
共 16 条
[1]   Evaluation of Retinal Image Quality Assessment Networks in Different Color-Spaces [J].
Fu, Huazhu ;
Wang, Boyang ;
Shen, Jianbing ;
Cui, Shanshan ;
Xu, Yanwu ;
Liu, Jiang ;
Shao, Ling .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT I, 2019, 11764 :48-56
[2]   Performance of a Deep-Learning Algorithm vs Manual Grading for Detecting Diabetic Retinopathy in India [J].
Gulshan, Varun ;
Rajan, Renu P. ;
Widner, Kasumi ;
Wu, Derek ;
Wubbels, Peter ;
Rhodes, Tyler ;
Whitehouse, Kira ;
Coram, Marc ;
Corrado, Greg ;
Ramasamy, Kim ;
Raman, Rajiv ;
Peng, Lily ;
Webster, Dale R. .
JAMA OPHTHALMOLOGY, 2019, 137 (09) :987-993
[3]   Artificial intelligence and deep learning in ophthalmology: Current status and future perspectives [J].
Jin, Kai ;
Ye, Juan .
ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH, 2022, 2 (03)
[4]   Automatic fundus image quality assessment on a continuous scale [J].
Karlsson, Robert A. ;
Jonsson, Benedikt A. ;
Hardarson, Sveinn H. ;
Olafsdottir, Olof B. ;
Halldorsson, Gisli H. ;
Stefansson, Einar .
COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 129
[5]   Development of a deep learning-based image eligibility verification system for detecting and filtering out ineligible fundus images: A multicentre study [J].
Li, Zhongwen ;
Jiang, Jiewei ;
Zhou, Heding ;
Zheng, Qinxiang ;
Liu, Xiaotian ;
Chen, Kuan ;
Weng, Hongfei ;
Chen, Wei .
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2021, 147
[6]   DeepDRiD: Diabetic Retinopathy-Grading and Image Quality Estimation Challenge [J].
Liu, Ruhan ;
Wang, Xiangning ;
Wu, Qiang ;
Dai, Ling ;
Fang, Xi ;
Yan, Tao ;
Son, Jaemin ;
Tang, Shiqi ;
Li, Jiang ;
Gao, Zijian ;
Galdran, Adrian ;
Poorneshwaran, J. M. ;
Liu, Hao ;
Wang, Jie ;
Chen, Yerui ;
Porwal, Prasanna ;
Tan, Gavin Siew Wei ;
Yang, Xiaokang ;
Dai, Chao ;
Song, Haitao ;
Chen, Mingang ;
Li, Huating ;
Jia, Weiping ;
Shen, Dinggang ;
Sheng, Bin ;
Zhang, Ping .
PATTERNS, 2022, 3 (06)
[7]   Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning [J].
Poplin, Ryan ;
Varadarajan, Avinash V. ;
Blumer, Katy ;
Liu, Yun ;
McConnell, Michael V. ;
Corrado, Greg S. ;
Peng, Lily ;
Webster, Dale R. .
NATURE BIOMEDICAL ENGINEERING, 2018, 2 (03) :158-164
[8]   Fundus image quality assessment: survey, challenges, and future scope [J].
Raj, Aditya ;
Tiwari, Anil Kumar ;
Martini, Maria G. .
IET IMAGE PROCESSING, 2019, 13 (08) :1211-1224
[9]   Evaluation of an AI system for the detection of diabetic retinopathy from images captured with a handheld portable fundus camera: the MAILOR AI study [J].
Rogers, T. W. ;
Gonzalez-Bueno, J. ;
Garcia Franco, R. ;
Lopez Star, E. ;
Mendez Marin, D. ;
Vassallo, J. ;
Lansingh, V. C. ;
Trikha, S. ;
Jaccard, N. .
EYE, 2021, 35 (02) :632-638
[10]   Using a Deep Learning Algorithm and Integrated Gradients Explanation to Assist Grading for Diabetic Retinopathy [J].
Sayres, Rory ;
Taly, Ankur ;
Rahimy, Ehsan ;
Blumer, Katy ;
Coz, David ;
Hammel, Naama ;
Krause, Jonathan ;
Narayanaswamy, Arunachalam ;
Rastegar, Zahra ;
Wu, Derek ;
Xu, Shawn ;
Barb, Scott ;
Joseph, Anthony ;
Shumski, Michael ;
Smith, Jesse ;
Sood, Arjun B. ;
Corrado, Greg S. ;
Peng, Lily ;
Webster, Dale R. .
OPHTHALMOLOGY, 2019, 126 (04) :552-564