The biosynthesis of EGCG, theanine and caffeine in response to temperature is mediated by hormone signal transduction factors in tea plant (Camellia sinensis L.)

被引:6
|
作者
Zhu, Qiufang [1 ]
Liu, Lijia [1 ]
Lu, Xiaofeng [1 ]
Du, Xinxin [1 ]
Xiang, Ping [1 ,2 ]
Cheng, Bosi [1 ]
Tan, Meng [1 ]
Huang, Jiaxin [1 ]
Wu, Lijiao [3 ]
Kong, Weilong [4 ]
Shi, Yutao [1 ,5 ]
Wu, Liangyu [1 ]
Lin, Jinke [1 ]
机构
[1] Fujian Agr & Forestry Univ, Coll Hort, Fuzhou, Peoples R China
[2] Hunan Univ Arts & Sci, Coll Life & Environm Sci, Changde, Peoples R China
[3] Fujian Sanan Sino Sci Photobiotech Co Ltd, Inst Photobiol Ind, Xiamen, Peoples R China
[4] Chinese Acad Agr Sci, Agr Genom Inst Shenzhen, Shenzhen Branch, Guangdong Lab Lingnan Modern Agr,Genome Anal Lab,M, Shenzhen, Peoples R China
[5] Wuyi Univ, Coll Tea & Food Sci, Wuyishan, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Camellia sinensis (L; ) O; Kuntze; temperature; endogenous hormone; plant hormone signal transduction; EGCG; theanine; caffeine; biosynthesis; EPIGALLOCATECHIN GALLATE EGCG; TRANSCRIPTOME; PERFORMANCE; EXTRACTION; EXPRESSION; TASTE;
D O I
10.3389/fpls.2023.1149182
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
As the main flavor components of tea, the contents of epigallocatechin-3-gallate (EGCG), theanine and caffeine are regulated by ambient temperature. However, whether the biosynthesis of EGCG, theanine and caffeine in response to temperature is regulated by endogenous hormones and its mechanism is still unclear. In this study, tea cuttings cultivated in the phytotron which treated at different temperatures 15celcius, 20celcius, 25celcius and 30celcius, respectively. The UPLC and ESI-HPLC-MS/MS were used to determine the contents of EGCG, theanine, caffeine and the contents of phytohormones in one leaf and a bud. The results showed that indoleacetic acid (IAA), gibberellin 1(GA1) and gibberellin 3 (GA3) were significantly correlated with the content of EGCG; Jasmonic acid (JA), jasmonate-isoleucine (JA-Ile) and methyl jasmonate (MeJA) were strongly correlated with theanine content; IAA, GA1 and gibberellin 4 (GA4) were significantly correlated with caffeine content at different temperatures. In order to explore the internal intricate relationships between the biosynthesis of these three main taste components, endogenous hormones, and structural genes in tea plants, we used multi-omics and multidimensional correlation analysis to speculate the regulatory mechanisms: IAA, GA1 and GA3 up-regulated the expressions of chalcone synthase (CsCHS) and trans-cinnamate 4-monooxygenase (CsC4H) mediated by the signal transduction factors auxin-responsive protein IAA (CsIAA) and DELLA protein (CsDELLA), respectively, which promoted the biosynthesis of EGCG; IAA, GA3 and GA1 up-regulated the expression of CsCHS and anthocyanidin synthase (CsANS) mediated by CsIAA and CsDELLA, respectively, via the transcription factor WRKY DNA-binding protein (CsWRKY), and promoted the biosynthesis of EGCG; JA, JA-Ile and MeJA jointly up-regulated the expression of carbonic anhydrase (CsCA) and down-regulated the expression of glutamate decarboxylase (CsgadB) mediated by the signal transduction factors jasmonate ZIM domain-containing protein (CsJAZ), and promoted the biosynthesis of theanine; JA, JA-Ile and MeJA also jointly inhibited the expression of CsgadB mediated by CsJAZ via the transcription factor CsWRKY and AP2 family protein (CsAP2), which promoted the biosynthesis of theanine; IAA inhibited the expression of adenylosuccinate synthase (CspurA) mediated by CsIAA via the transcription factor CsWRKY; GA1 and gibberellin 4 (GA4) inhibited the expression of CspurA mediated by CsDELLA through the transcription factor CsWRKY, which promoted the biosynthesis of caffeine. In conclusion, we revealed the underlying mechanism of the biosynthesis of the main taste components in tea plant in response to temperature was mediated by hormone signal transduction factors, which provided novel insights into improving the quality of tea.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Influence of shade on flavonoid biosynthesis in tea (Camellia sinensis (L.) O. Kuntze)
    Wang, YunSheng
    Gao, LiPing
    Shan, Yu
    Liu, YaJun
    Tian, YanWei
    Xia, Tao
    SCIENTIA HORTICULTURAE, 2012, 141 : 7 - 16
  • [42] Molecular regulation of catechins biosynthesis in tea [Camellia sinensis (L.) O. Kuntze]
    Rani, Arti
    Singh, Kashmir
    Ahuja, Paramvir S.
    Kumar, Sanjay
    GENE, 2012, 495 (02) : 205 - 210
  • [43] Effect of different timing of withering on polyphenols and caffeine contents of black tea camellia sinensis L.
    Aftab, Samra
    Saleem, Maria
    Farrukh, Samavia
    Shamrez, Baber
    Hamid, Farrukh Syiar
    Waheed, Abdul
    Aslam, Sohail
    MOROCCAN JOURNAL OF CHEMISTRY, 2015, 3 (03): : 618 - 626
  • [44] Immunohistochemical localization of caffeine in young Camellia sinensis (L.) O. Kuntze (tea) leaves
    Shane V. van Breda
    Chris F. van der Merwe
    Hannes Robbertse
    Zeno Apostolides
    Planta, 2013, 237 : 849 - 858
  • [45] Immunohistochemical localization of caffeine in young Camellia sinensis (L.) O. Kuntze (tea) leaves
    van Breda, Shane V.
    van der Merwe, Chris F.
    Robbertse, Hannes
    Apostolides, Zeno
    PLANTA, 2013, 237 (03) : 849 - 858
  • [46] L-Theanine (Suntheanin) Effects of L-Theanine, an Amino Acid Derived From Camellia sinensis (Green Tea), on Stress Response Parameters
    Ross, Stephanie Maxine
    HOLISTIC NURSING PRACTICE, 2014, 28 (01) : 65 - 68
  • [47] Theanine Improves Salt Stress Tolerance via Modulating Redox Homeostasis in Tea Plants (Camellia sinensis L.)
    Chen, Ziping
    Lin, Shijia
    Li, Juan
    Chen, Tingting
    Gu, Quan
    Yang, Tianyuan
    Zhang, Zhaoliang
    FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [48] Seasonal Theanine Accumulation and Related Gene Expression in the Roots and Leaf Buds of Tea Plants (Camellia Sinensis L.)
    Li, Fang
    Dong, Chunxia
    Yang, Tianyuan
    Ma, Jingzhen
    Zhang, Shupei
    Wei, Chaoling
    Wan, Xiaochun
    Zhang, Zhaoliang
    FRONTIERS IN PLANT SCIENCE, 2019, 10
  • [49] Time-series transcriptomic analysis reveals novel gene modules that control theanine biosynthesis in tea plant (Camellia sinensis)
    Cao, Haisheng
    He, Xiaolong
    Du, Jinke
    Zhang, Rui
    Chen, Ying
    Ma, Yong
    Chen, Qi
    Fang, Congbing
    Ho, Chi-Tang
    Zhang, Shihua
    Wan, Xiaochun
    PLOS ONE, 2020, 15 (09):
  • [50] Fluoride and Aluminium in Tea (Camellia sinensis L.)-Tea Quality Indicators and Risk Factors for Consumers
    Pavlovic, Anja
    Tavcar, Gasper
    Ponikvar-Svet, Maja
    MOLECULES, 2023, 28 (17):