Hierarchical Interpretable Imitation Learning for End-to-End Autonomous Driving

被引:67
|
作者
Teng, Siyu [1 ,2 ]
Chen, Long [3 ,4 ]
Ai, Yunfeng [5 ]
Zhou, Yuanye [6 ]
Xuanyuan, Zhe [1 ]
Hu, Xuemin [7 ]
机构
[1] HKBU United Int Coll, BNU, Zhuhai 999077, Peoples R China
[2] Hong Kong Baptist Univ, Kowloon, Hong Kong 999077, Peoples R China
[3] Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
[4] Waytous Inc Qingdao, Qingdao 266109, Peoples R China
[5] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[6] Malardalen Univ, S-72214 Vasteras, Sweden
[7] Hubei Univ, Sch Comp Sci & Informat Engn, Wuhan 430062, Peoples R China
来源
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES | 2023年 / 8卷 / 01期
基金
中国国家自然科学基金;
关键词
Semantics; Data models; Autonomous vehicles; Cameras; Reinforcement learning; Predictive models; Robustness; Autonomous driving; imitation learning; motion planning; end-to-End driving; interpretability;
D O I
10.1109/TIV.2022.3225340
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
End-to-end autonomous driving provides a simple and efficient framework for autonomous driving systems, which can directly obtain control commands from raw perception data. However, it fails to address stability and interpretability problems in complex urban scenarios. In this paper, we construct a two-stage end-to-end autonomous driving model for complex urban scenarios, named HIIL (Hierarchical Interpretable Imitation Learning), which integrates interpretable BEV mask and steering angle to solve the problems shown above. In Stage One, we propose a pretrained Bird's Eye View (BEV) model which leverages a BEV mask to present an interpretation of the surrounding environment. In Stage Two, we construct an Interpretable Imitation Learning (IIL) model that fuses BEV latent feature from Stage One with an additional steering angle from Pure-Pursuit (PP) algorithm. In the HIIL model, visual information is converted to semantic images by the semantic segmentation network, and the semantic images are encoded to extract the BEV latent feature, which are decoded to predict BEV masks and fed to the IIL as perception data. In this way, the BEV latent feature bridges the BEV and IIL models. Visual information can be supplemented by the calculated steering angle for PP algorithm, speed vector, and location information, thus it could have better performance in complex and terrible scenarios. Our HIIL model meets an urgent requirement for interpretability and robustness of autonomous driving. We validate the proposed model in the CARLA simulator with extensive experiments which show remarkable interpretability, generalization, and robustness capability in unknown scenarios for navigation tasks.
引用
收藏
页码:673 / 683
页数:11
相关论文
共 50 条
  • [41] HybridTE2: Hybrid Transformer-based End-to-End Learning for Autonomous Driving
    Rayakota, Haritha Prasad
    Huang, Pei-Chi
    2024 IEEE 7TH INTERNATIONAL CONFERENCE ON INDUSTRIAL CYBER-PHYSICAL SYSTEMS, ICPS 2024, 2024,
  • [42] Slasher: Stadium racer car for event camera end-to-end learning autonomous driving experiments
    Hu, Yuhuang
    Chen, Hong Ming
    Delbruck, Tobi
    2019 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE CIRCUITS AND SYSTEMS (AICAS 2019), 2019, : 29 - 33
  • [43] Assuring the Safety of End-to-End Learning-Based Autonomous Driving through Runtime Monitoring
    Grieser, Joerg
    Zhang, Meng
    Warnecke, Tim
    Rausch, Andreas
    2020 23RD EUROMICRO CONFERENCE ON DIGITAL SYSTEM DESIGN (DSD 2020), 2020, : 476 - 483
  • [44] Evolutionary End-to-End Autonomous Driving Model With Continuous-Time Neural Networks
    Du, Jiatong
    Bai, Yulong
    Li, Ye
    Geng, Jiaheng
    Huang, Yanjun
    Chen, Hong
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2024, 29 (04) : 2983 - 2990
  • [45] Performance optimization of autonomous driving control under end-to-end deadlines
    Bai, Yunhao
    Li, Li
    Wang, Zejiang
    Wang, Xiaorui
    Wang, Junmin
    REAL-TIME SYSTEMS, 2022, 58 (04) : 509 - 547
  • [46] Intermediate Tasks Enhanced End-to-End Autonomous Driving with Uncertainty Estimation
    Huang, Xuean
    Su, Jianmei
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 133 - 138
  • [47] Performance optimization of autonomous driving control under end-to-end deadlines
    Yunhao Bai
    Li Li
    Zejiang Wang
    Xiaorui Wang
    Junmin Wang
    Real-Time Systems, 2022, 58 : 509 - 547
  • [48] A Hierarchical Imitation Learning-based Decision Framework for Autonomous Driving
    Liang, Hebin
    Dong, Zibin
    Ma, Yi
    Hao, Xiaotian
    Zheng, Yan
    Hao, Jianye
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 4695 - 4701
  • [49] Deep End-to-end Imitation Learning for Missile Guidance With Infrared Images
    Seungjae Lee
    Jongho Shin
    Hyeong-Geun Kim
    Daesol Cho
    H. Jin Kim
    International Journal of Control, Automation and Systems, 2023, 21 : 3419 - 3429
  • [50] Deep End-to-end Imitation Learning for Missile Guidance With Infrared Images
    Lee, Seungjae
    Shin, Jongho
    Kim, Hyeong-Geun
    Cho, Daesol
    Kim, H. Jin
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2023, 21 (10) : 3419 - 3429