Waterproof, Breathable, and UV-Protective Nanofiber-Based Triboelectric Nanogenerator for Self-Powered Sensors

被引:28
|
作者
Sun, Na [1 ]
Zhang, Xiao-Nan [1 ]
Li, Jia-Ze [1 ]
Cai, Ya-Wei [1 ]
Wei, Zhan [1 ]
Ding, Ling [1 ]
Wang, Gui-Gen [1 ,2 ,3 ]
机构
[1] Harbin Inst Technol Shenzhen, Sch Mat Sci & Engn, Shenzhen Key Lab Adv Mat, Shenzhen 518055, Peoples R China
[2] Harbin Inst Technol Shenzhen, Guangdong Prov Key Lab Semicond Optoelect Mat & I, Shenzhen 518055, Peoples R China
[3] Harbin Inst Technol, Natl Key Lab Sci & Technol Adv Composites Special, Harbin 150080, Peoples R China
基金
中国国家自然科学基金;
关键词
PDMS; PVDF; nanofiber film; triboelectric nanogenerator; self-powered sensor; MEMBRANE;
D O I
10.1021/acssuschemeng.2c07643
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanofiber-based triboelectric nanogenerators (TENGs) have garnered increasing attention as the multifunctional power source in wearable electronics. However, most traditional wearable device-based TENGs are unable to simultaneously achieve excellent outputs and multifunctional properties. Here, we design a waterproof, breathable, UV-protective TENG based on a poly(vinylidene fluoride) (PVDF)/ poly(dimethylsiloxane) (PDMS)/TiO2 nanofiber film for effective harvesting mechanical energy by a simple and low-cost combined electrospinning/electrospray method. The introduction of PVDF can overcome the synthesis puzzle of PDMS nanofibers during the electrospinning process. With numerous three-dimensional micro-to-nano hierarchical pores of a nanofiber network, the constructed TENG can furnish large specific surface area and good breathability. The addition of TiO2 nanoparticles (NPs) increases the dielectric constant and surface roughness of the PVDF/PDMS/TiO2 nanofiber film as well as the corresponding output performance of the nanofiber-based TENG. The as-presented TENG has a maximum peak power density of 0.72 W/m2 and excellent breathability (18.6 mm/s). Due to the UV radiation absorbed by the TiO2 NPs, the UVA transmittance (TUVA) of the TENG with 4% TiO2 NPs is decreased to only 8.2%. The constructed TENG can be integrated to monitor human physiological signals in a self-powered manner. The nanofiber-based TENG provides a version to render these suitable for the daily-used wearable or portable electronics shortly.
引用
收藏
页码:5608 / 5616
页数:9
相关论文
共 50 条
  • [31] Self-powered artificial synapses actuated by triboelectric nanogenerator
    Liu, Yaqian
    Zhong, Jianfeng
    Li, Enlong
    Yang, Huihuang
    Wang, Xiumei
    Lai, Dengxiao
    Chen, Huipeng
    Guo, Tailiang
    NANO ENERGY, 2019, 60 : 377 - 384
  • [32] Advances and prospects of triboelectric nanogenerator for self-powered system
    An, Xuyao
    Wang, Chunnan
    Shao, Ruomei
    Sun, Shuqing
    INTERNATIONAL JOURNAL OF SMART AND NANO MATERIALS, 2021, 12 (03) : 233 - 255
  • [33] Self-Powered Phase Transition Driven by Triboelectric Nanogenerator
    Ren, Lele
    Xiao, Junfeng
    Wang, Wei
    Yu, Aifang
    Zhang, Yufei
    Zhai, Junyi
    ACS APPLIED ELECTRONIC MATERIALS, 2023, 5 (05) : 2845 - 2852
  • [34] Self-Powered Electrospinning System Driven by a Triboelectric Nanogenerator
    Li, Congju
    Yin, Yingying
    Wang, Bin
    Zhou, Tao
    Wang, Jiaona
    Luo, Jianjun
    Tang, Wei
    Cao, Ran
    Yuan, Zuqing
    Li, Nianwu
    Du, Xinyu
    Wang, Chunru
    Zhao, Shuyu
    Liu, Yuebo
    Wang, Zhong Lin
    ACS NANO, 2017, 11 (10) : 10439 - 10445
  • [35] Self-Powered Sensor Based on Triboelectric Nanogenerator for Landslide Displacement Measurement
    Chen, Jinguo
    Zou, Hao
    Pan, Guangzhi
    Mao, Shuai
    Chen, Bing
    Wu, Chuan
    JOURNAL OF SENSORS, 2024, 2024
  • [36] Self-Powered Seawater Electrolysis Based on a Triboelectric Nanogenerator for Hydrogen Production
    Zhang, Baofeng
    Zhang, Chuguo
    Yang, Ou
    Yuan, Wei
    Liu, Yuebo
    He, Lixia
    Hu, Yuexiao
    Zhao, Zhihao
    Zhou, Linglin
    Wang, Jie
    Wang, Zhong Lin
    ACS NANO, 2022, : 15286 - 15296
  • [37] Self-powered AC electrokinetic microfluidic system based on triboelectric nanogenerator
    Zhou, Jian
    Tao, Ye
    Liu, Weiyu
    Sun, Haizhen
    Wu, Wenlong
    Song, Chunlei
    Xue, Rui
    Jiang, Tianyi
    Jiang, Hongyuan
    Ren, Yukun
    NANO ENERGY, 2021, 89
  • [38] Self-powered environmental monitoring via a triboelectric nanogenerator
    Chang, Austin
    Uy, Cameron
    Xiao, Xiao
    Chen, Jun
    NANO ENERGY, 2022, 98
  • [39] Research on the self-powered downhole vibration sensor based on triboelectric nanogenerator
    Chuan, Wu
    He, Huang
    Shuo, Yang
    Fan, Chenxing
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2021, 235 (22) : 6427 - 6434
  • [40] Triboelectric nanogenerator as self-powered active sensors for detecting liquid/gaseous water/ethanol
    Zhang, Hulin
    Yang, Ya
    Su, Yuanjie
    Chen, Jun
    Hu, Chenguo
    Wu, Zhenkun
    Liu, Yan
    Wong, Ching Ping
    Bando, Yoshio
    Wang, Zhong Lin
    NANO ENERGY, 2013, 2 (05) : 693 - 701