LAFD-Net: Learning With Noisy Pseudo-Labels for Semisupervised Bearing Fault Diagnosis

被引:6
|
作者
Jian, Yifan [1 ]
Chen, Zhi [1 ]
Lei, Yinjie [2 ]
He, Zhengxi [1 ]
Zhao, Yang [1 ]
He, Liang [1 ]
Luo, Wei [1 ]
Chen, Xuekun [1 ]
机构
[1] Nucl Power Inst China, Sci & Technol Reactor Syst Design Technol Lab, Chengdu 610213, Peoples R China
[2] Sichuan Univ, Coll Elect & Informat Engn, Chengdu 610065, Peoples R China
关键词
Bearing fault; learning with noisy data; semisupervised learning (SSL); student-teacher model; NEURAL-NETWORK; CLASSIFICATION;
D O I
10.1109/JSEN.2023.3233957
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Fault diagnosis for the rolling bearing is an important field that has received increasing attention in recent years. The main challenge for this task is the lack of labeled data. Existing works circumvent this problem with pseudo-labels generated from labeled data. However, these pseudo-labels are noisy even with consistency checks or confidence-based filtering due to the minimal amount of training data. To solve this problem, a novel label-level antinoise fault diagnosis network (LAFD-Net) is proposed in this article. Specifically, we propose an online asymptotic label updating (OALU) strategy that contains two updating stages: self-correction stage and cross-correction stage. The proposed OALU can stably and reliably generate new corrected pseudo-labels, gradually replacing the old noisy ones. The LAFD-Net adopts a student-teacher architecture. For such a student-teacher model, we propose a consistency enhancement (CE) loss to strengthen the feature consistency between the student and teacher networks, aiming to achieve more efficient use of plentiful unlabeled data via feature regularization. Finally, a series of experiments were conducted using the University of Cincinnati Intelligent Maintenance System (IMS) Center dataset and the Case Western Reserve University (CWRU) bearing dataset. The experimental results demonstrate that the proposed semisupervised learning (SSL) schemes outperformed existing state-of-the-art methods with the same percentage of labeled data samples.
引用
收藏
页码:3911 / 3923
页数:13
相关论文
共 50 条
  • [21] Bearing Fault Diagnosis Based on Small Sample Learning of Maml-Triplet
    Cheng, Qiang
    He, Zhaoheng
    Zhang, Tao
    Li, Ying
    Liu, Zhifeng
    Zhang, Ziling
    APPLIED SCIENCES-BASEL, 2022, 12 (21):
  • [22] Joint distribution adaptation network with adversarial learning for rolling bearing fault diagnosis
    Zhao, Ke
    Jiang, Hongkai
    Wang, Kaibo
    Pei, Zeyu
    KNOWLEDGE-BASED SYSTEMS, 2021, 222
  • [23] Deep Learning-Based Bearing Fault Diagnosis Method for Embedded Systems
    Pham, Minh Tuan
    Kim, Jong-Myon
    Kim, Cheol Hong
    SENSORS, 2020, 20 (23) : 1 - 15
  • [24] A novel bearing fault diagnosis method using deep residual learning network
    Ayas, Selen
    Ayas, Mustafa Sinasi
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (16) : 22407 - 22423
  • [25] Spectral proper orthogonal decomposition and machine learning algorithms for bearing fault diagnosis
    Afia, Adel
    Gougam, Fawzi
    Touzout, Walid
    Rahmoune, Chemseddine
    Ouelmokhtar, Hand
    Benazzouz, Djamel
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2023, 45 (10)
  • [26] Fault Diagnosis of Rolling Bearing Based on Modified Deep Metric Learning Method
    Xu, Zengbing
    Li, Xiaojuan
    Lin, Hui
    Wang, Zhigang
    Peng, Tao
    SHOCK AND VIBRATION, 2021, 2021 (2021)
  • [27] Fault diagnosis of rolling bearing based on optimized soft competitive learning Fuzzy ART and similarity evaluation technique
    Wan, Xiao-Jin
    Liu, Licheng
    Xu, Zengbing
    Xu, Zhigang
    Li, Qinglei
    Xu, Fengxiang
    ADVANCED ENGINEERING INFORMATICS, 2018, 38 : 91 - 100
  • [28] Fault Diagnosis of Bearing in Wind Turbine Gearbox Under Actual Operating Conditions Driven by Limited Data With Noise Labels
    Huang, Nantian
    Chen, Qingzhu
    Cai, Guowei
    Xu, Dianguo
    Zhang, Liang
    Zhao, Wenguang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [29] Federated temporal-context contrastive learning for fault diagnosis using multiple datasets with insufficient labels
    Zheng, Haowen
    Liu, Hui
    Liu, Zhenyu
    Tan, Jianrong
    ADVANCED ENGINEERING INFORMATICS, 2024, 60
  • [30] A fault diagnosis method based on dilated convolution and attention for rolling bearing under multiple working conditions and noisy environments
    Zhang, Hui
    Liu, Shengdong
    Lv, Ziwei
    Sang, Zhenlong
    Li, Fangning
    JOURNAL OF VIBROENGINEERING, 2023, 25 (07) : 1257 - 1272