A new preconditioner for Gauss-Seidel method for solving multi-linear systems

被引:4
|
作者
Xie, Kai [1 ]
Miao, Shu-Xin [1 ]
机构
[1] Northwest Normal Univ, Coll Math & Stat, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
Tensor splitting; M-tensor; Multi-linear system; Preconditioned Gauss-Seidel method; M-TENSORS; EIGENVALUE;
D O I
10.1007/s13160-023-00573-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By combining the preconditioner I + S-a by Li et al. (Appl Numer Math 134:105- 121, 2018) and some elements of the last row of the majorization matrix associated with the coefficient tensor, we propose a new preconditioner and present the corresponding preconditioned Gauss-Seidel method for solving multi-linear systems with M-tensors. Theoretically, we give the convergence and comparison theorems of the proposed preconditioned Gauss-Seidel method. Numerical examples are given to show our theoretical results and the efficiency of the proposed preconditioner.
引用
收藏
页码:1159 / 1173
页数:15
相关论文
共 50 条
  • [41] Gauss-Seidel's Theorem for Infinite Systems of Linear Equations (II)
    Finta, Bela
    EUROPEAN INTEGRATION: BETWEEN TRADITION AND MODERNITY, VOL 1, 2005, : 676 - 684
  • [42] A distributed memory parallel Gauss-Seidel algorithm for linear algebraic systems
    Shang, Yueqiang
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 57 (08) : 1369 - 1376
  • [43] USE OF GAUSS-SEIDEL METHOD ON LINEAR PARAMETER INTERPRETATION IN MAGNETOMETRY AND GRAVIMETRY
    HJELT, SE
    GEOEXPLORATION, 1976, 14 (01): : 21 - 36
  • [44] Gauss-Seidel method for multi-valued inclusions with Z mappings
    Allevi, E.
    Gnudi, A.
    Konnov, I. V.
    Schaible, S.
    JOURNAL OF GLOBAL OPTIMIZATION, 2012, 53 (01) : 97 - 105
  • [45] New affine projection algorithms based on Gauss-Seidel method
    Albu, F
    Kotropoulos, C
    Cernekova, Z
    Pitas, I
    ISSCS 2005: INTERNATIONAL SYMPOSIUM ON SIGNALS, CIRCUITS AND SYSTEMS, VOLS 1 AND 2, PROCEEDINGS, 2005, : 565 - 568
  • [46] An accelerated Gauss-Seidel method for inverse modeling
    Ng, TM
    Farhang-Boroujeny, B
    Garg, HK
    SIGNAL PROCESSING, 2003, 83 (03) : 517 - 529
  • [47] Convergence analysis of the Gauss-Seidel preconditioner for discretized one dimensional Euler equations
    Reusken, A
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (04) : 1388 - 1405
  • [48] Experiments on asynchronous partial Gauss-Seidel method
    Nishida, H
    Kuang, HR
    ADVANCED PARALLEL PROCESSING TECHNOLOGIES, PROCEEDINGS, 2005, 3756 : 111 - 120
  • [49] A Gauss-Seidel projection method for micromagnetics simulations
    Wang, XP
    García-Cervera, CJ
    Weinan, E
    JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 171 (01) : 357 - 372
  • [50] A Block Gauss-Seidel/Jacobi Preconditioner for Heterogeneous Many-Core Architecture
    Wu L.-L.
    Chen R.-L.
    Luo L.
    Yan Z.-Z.
    Liao Z.-J.
    Chi L.-H.
    Liu J.
    Jisuanji Xuebao/Chinese Journal of Computers, 2019, 42 (11): : 2447 - 2460