The intersection subgroup graph of a group

被引:0
作者
Anderson, David F. [1 ]
Al-Kaseasbeh, Saba [2 ]
机构
[1] Univ Tennessee, Dept Math, Knoxville, TN USA
[2] Tafila Tech Univ, Fac Sci, Dept Math, Tafila, Jordan
关键词
Abelian group; complete bipartite graph; complete graph; intersection graph; intersection subgroup graph; group; planar graph; zero-divisor graph; ZERO-DIVISOR GRAPH;
D O I
10.1080/00927872.2023.2186146
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a group. In this paper, we introduce and study the intersection subgroup graph of G as the (simple) graph Gamma(S)(G) with vertices the nontrivial subgroups H of G such that H boolean AND K = {e} for some nontrivial subgroup K of G, and distinct vertices H and K are adjacent if and only if H boolean AND K = {e}. We investigate when Gamma(S)(G) is a nonempty, finite, complete, complete bipartite, or planar graph.
引用
收藏
页码:3556 / 3573
页数:18
相关论文
共 11 条
  • [1] The intersection graph of a group
    Akbari, S.
    Heydari, F.
    Maghasedi, M.
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2015, 14 (05)
  • [2] On the complement of the intersection graph of submodules of a module
    Akbari, S.
    Tavallaee, H. A.
    Ghezelahmad, S. Khalashi
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2015, 14 (08)
  • [3] Anderson D. F., 2021, GRAPHS RINGS
  • [4] The zero-divisor graph of a commutative ring
    Anderson, DF
    Livingston, PS
    [J]. JOURNAL OF ALGEBRA, 1999, 217 (02) : 434 - 447
  • [5] Anderson DF., 2017, GROUPS MODULES MODEL, P23
  • [6] Bollobas B., 1979, Graph Theory: An Introductory Course
  • [7] The zero-divisor graph of a commutative semigroup
    DeMeyer, FR
    McKenzie, T
    Schneider, K
    [J]. SEMIGROUP FORUM, 2002, 65 (02) : 206 - 214
  • [8] Fuchs L., 1973, SPRINGER MONOGR MATH, VII
  • [9] Kaplansky I., 1968, INFINITE ABELIAN GRO
  • [10] Olshanskii A. Y., 1991, Geometry of defining relations in groups