Phenotyping senescent mesenchymal stromal cells using AI image translation

被引:8
|
作者
Weber, Leya [1 ]
Lee, Brandon S. [2 ]
Imboden, Sara [1 ]
Hsieh, Cho-Jui [3 ]
Lin, Neil Y. C. [1 ,2 ,4 ,5 ,6 ,7 ]
机构
[1] Univ Calif Los Angeles, Dept Mech & Aerosp Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA
[5] Univ Calif Los Angeles, Jonsson Comprehens Canc Ctr, Los Angeles, CA 90095 USA
[6] Univ Calif Los Angeles, Inst Quantitat & Computat Biosci, Los Angeles, CA 90095 USA
[7] Univ Calif Los Angeles, Broad Stem Cell Ctr, Los Angeles, CA 90095 USA
关键词
MSC phenotyping; Senescence; AI image translation; Cell manufacturing; HUMAN BONE-MARROW; STEM-CELLS; CELLULAR SENESCENCE; ADIPOSE; CANCER; BLOOD;
D O I
10.1016/j.crbiot.2023.100120
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Mesenchymal stromal cells (MSCs) offer promising potential in biomedical research, clinical therapeutics, and immunomodulatory therapies due to their ease of isolation and multipotent, immunoprivileged, and immuno-suppersive properties. Extensive efforts have focused on optimizing the cell isolation and culture methods to generate scalable, therapeutically-relevant MSCs for clinical applications. However, MSC-based therapies are often hindered by cell heterogeneity and inconsistency of therapeutic function caused, in part, by MSC senes-cence. As such, noninvasive and molecular-based MSC characterizations play an essential role in assuring the consistency of MSC functions. Here, we demonstrated that AI image translation algorithms can effectively pre-dict immunofluorescence images of MSC senescence markers from phase contrast images. We showed that the expression level of senescence markers including senescence-associated beta-galactosidase (SABG), p16, p21, and p38 are accurately predicted by deep-learning models for Doxorubicin-induced MSC senescence, irradiation-induced MSC senescence, and replicative MSC senescence. Our AI model distinguished the non-senescent and senescent MSC populations and simultaneously captured the cell-to-cell variability within a pop-ulation. Our microscopy-based phenotyping platform can be integrated with cell culture routines making it an easily accessible tool for MSC engineering and manufacturing.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Myeloma cells can corrupt senescent mesenchymal stromal cells and impair their anti-tumor activity
    Ozcan, Servet
    Alessio, Nicola
    Acar, Mustafa Burak
    Toprak, Guler
    Gonen, Zeynep Burcin
    Peluso, Gianfranco
    Galderisi, Umberto
    ONCOTARGET, 2015, 6 (37) : 39482 - 39492
  • [2] Characterization of Induction and Targeting of Senescent Mesenchymal Stromal Cells
    Gresham, Robert C. H.
    Kumar, Devanshi
    Copp, Jonathan
    Lee, Mark A.
    Leach, J. Kent
    TISSUE ENGINEERING PART C-METHODS, 2022, 28 (06) : 239 - 249
  • [3] Immunophenotype of Replicative Senescent Mesenchymal Stromal Cells
    Ratushnyy, A. Yu.
    UCHENYE ZAPISKI KAZANSKOGO UNIVERSITETA-SERIYA ESTESTVENNYE NAUKI, 2023, 165 (02): : 216 - 230
  • [4] Senescent mesenchymal stem/stromal cells and restoring their cellular functions
    Meng, Qing-Shu
    Liu, Jing
    Wei, Lu
    Fan, Hui-Min
    Zhou, Xiao-Hui
    Liang, Xiao-Ting
    WORLD JOURNAL OF STEM CELLS, 2020, 12 (09): : 966 - 985
  • [5] Rapid Detection of Senescent Mesenchymal Stromal Cells by a Fluorescent Probe
    Ang, Joshur
    Lee, Yong-An
    Raghothaman, Deepak
    Jayaraman, Premkumar
    Teo, Kim L.
    Khan, Fahima J.
    Reuveny, Shaul
    Chang, Young-Tae
    Kong, Nam-Young
    Oh, Steve
    BIOTECHNOLOGY JOURNAL, 2019, 14 (10)
  • [6] p53 regulates autophagic activity in senescent rat mesenchymal stromal cells
    Zheng, Yong
    Lei, Yueshan
    Hu, Chenghua
    Hu, Chengjun
    EXPERIMENTAL GERONTOLOGY, 2016, 75 : 64 - 71
  • [7] Identification of senescent cells in multipotent mesenchymal stromal cell cultures: Current methods and future directions
    Zhai, Weichao
    Yong, Derrick
    El-Jawhari, Jehan Jomaa
    Cuthbert, Richard
    McGonagle, Dennis
    Naing, May Win
    Jones, Elena
    CYTOTHERAPY, 2019, 21 (08) : 803 - 819
  • [8] Suppressing the Aging Phenotype of Mesenchymal Stromal Cells: Are We Ready for Clinical Translation?
    Roato, Ilaria
    Visca, Matteo
    Mussano, Federico
    BIOMEDICINES, 2024, 12 (12)
  • [9] Characterization of senescent mesenchymal stem/stromal cells derived from equine bone marrow and the effects of NANOG on the senescent phenotypes
    Kushida, Chiho
    Tamura, Norihisa
    Kasashima, Yoshinori
    Sato, Kota
    Arai, Katsuhiko
    JOURNAL OF VETERINARY MEDICAL SCIENCE, 2024, 86 (09) : 930 - 937
  • [10] Changes in autophagy, proteasome activity and metabolism to determine a specific signature for acute and chronic senescent mesenchymal stromal cells
    Capasso, Stefania
    Alessio, Nicola
    Squillaro, Tiziana
    Di Bernardo, Giovanni
    Melone, Mariarosa A.
    Cipollaro, Marilena
    Peluso, Gianfranco
    Galderisi, Umberto
    ONCOTARGET, 2015, 6 (37) : 39457 - 39468