UAV imagery data and machine learning: A driving merger for predictive analysis of qualitative yield in sugarcane

被引:5
作者
Barbosa Jr, Marcelo Rodrigues [1 ,2 ]
Moreira, Bruno Rafael de Almeida [1 ]
de Oliveira, Romario Porto [1 ]
Shiratsuchi, Luciano Shozo [2 ]
da Silva, Rouverson Pereira [1 ]
机构
[1] Sao Paulo State Univ Unesp, Sch Agr & Vet Sci, Dept Engn & Math Sci, Sao Paulo, Brazil
[2] Louisiana State Univ, Sch Plant Environm & Soil Sci, AgCtr, Baton Rouge, LA 70803 USA
关键词
remote sensing; brix; sucrose; ripening; Saccharum spp; smart harvest; LEAF; REFLECTANCE; ALGORITHMS; VEGETATION;
D O I
10.3389/fpls.2023.1114852
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Predicting sugarcane yield by quality allows stakeholders from research centers to industries to decide on the precise time and place to harvest a product on the field; hence, it can streamline workflow while leveling up the cost-effectiveness of full-scale production. degrees Brix and Purity can offer significant and reliable indicators of high-quality raw material for industrial processing for food and fuel. However, their analysis in a relevant laboratory can be costly, time-consuming, and not scalable. We, therefore, analyzed whether merging multispectral images and machine learning (ML) algorithms can develop a non-invasive, predictive framework to map canopy reflectance to degrees Brix and Purity. We acquired multispectral images data of a sugarcane-producing area via unmanned aerial vehicle (UAV) while determining degrees Brix and analytical Purity from juice in a routine laboratory. We then tested a suite of ML algorithms, namely multiple linear regression (MLR), random forest (RF), decision tree (DT), and support vector machine (SVM) for adequacy and complexity in predicting degrees Brix and Purity upon single spectral bands, vegetation indices (VIs), and growing degree days (GDD). We obtained evidence for biophysical functions accurately predicting degrees Brix and Purity. Those can bring at least 80% of adequacy to the modeling. Therefore, our study represents progress in assessing and monitoring sugarcane on an industrial scale. Our insights can offer stakeholders possibilities to develop prescriptive harvesting and resource-effective, high-performance manufacturing lines for by-products.
引用
收藏
页数:11
相关论文
共 53 条
[31]   Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening [J].
Merzlyak, MN ;
Gitelson, AA ;
Chivkunova, OB ;
Rakitin, VY .
PHYSIOLOGIA PLANTARUM, 1999, 106 (01) :135-141
[32]   Sugar Transporters, Sugar-Metabolizing Enzymes, and Their Interaction with Phytohormones in Sugarcane [J].
Misra, Varucha ;
Mall, A. K. ;
Ansari, Shamim Akhtar ;
Ansari, Mohammad Israil .
JOURNAL OF PLANT GROWTH REGULATION, 2023, 42 (08) :4975-4988
[33]   Predicting Canopy Chlorophyll Content in Sugarcane Crops Using Machine Learning Algorithms and Spectral Vegetation Indices Derived from UAV Multispectral Imagery [J].
Narmilan, Amarasingam ;
Gonzalez, Felipe ;
Salgadoe, Arachchige Surantha Ashan ;
Kumarasiri, Unupen Widanelage Lahiru Madhushanka ;
Weerasinghe, Hettiarachchige Asiri Sampageeth ;
Kulasekara, Buddhika Rasanjana .
REMOTE SENSING, 2022, 14 (05)
[34]  
Neter J., 1996, Applied linear statistical models, P318
[35]   Sugarcane Crop Type Discrimination and Area Mapping at Field Scale Using Sentinel Images and Machine Learning Methods [J].
Nihar, Ashmitha ;
Patel, N. R. ;
Pokhariyal, Shweta ;
Danodia, Abhishek .
JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2022, 50 (02) :217-225
[36]   Smart-Map: An Open-Source QGIS Plugin for Digital Mapping Using Machine Learning Techniques and Ordinary Kriging [J].
Pereira, Gustavo Willam ;
Magalhaes Valente, Domingos Sarvio ;
de Queiroz, Daniel Marcal ;
de Freitas Coelho, Andre Luiz ;
Costa, Marcelo Marques ;
Grift, Tony .
AGRONOMY-BASEL, 2022, 12 (06)
[37]   Integrated planning for planting and harvesting sugarcane and energy-cane for the production of sucrose and energy [J].
Poltroniere, Sonia Cristina ;
Filho, Angelo Aliano ;
Caversan, Amanda Suellen ;
Balbo, Antonio Roberto ;
Florentino, Helenice de Oliveira .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2021, 184 (184)
[38]   Estimating technological parameters and stem productivity of sugarcane treated with rock powder using a proximal spectroradiometer Vis-NIR-SWIR [J].
Rodrigues, Marlon ;
Cezar, Everson ;
dos Santos, Glaucio Leboso Alemparte Abrantes ;
Reis, Amanda Silveira ;
Furlanetto, Renato Herrig ;
de Oliveira, Roney Berti ;
D'Avila, Roberto Carlos ;
Nanni, Marcos Rafael .
INDUSTRIAL CROPS AND PRODUCTS, 2022, 186
[39]   Vis-NIR spectroscopy: from leaf dry mass production estimate to the prediction of macro- and micronutrients in soybean crops [J].
Rodrigues, Marlon ;
Nanni, Marcos Rafael ;
Cezar, Everson ;
dos Santos, Glaucio Leboso Alemparte Abrantes ;
Reis, Amanda Silveira ;
de Oliveira, Karym Mayara ;
de Oliveira, Roney Berti .
JOURNAL OF APPLIED REMOTE SENSING, 2020, 14 (04)
[40]  
Rouse J.W., 1974, 3 EARTH RESOURCES TE