UAV imagery data and machine learning: A driving merger for predictive analysis of qualitative yield in sugarcane

被引:4
作者
Barbosa Jr, Marcelo Rodrigues [1 ,2 ]
Moreira, Bruno Rafael de Almeida [1 ]
de Oliveira, Romario Porto [1 ]
Shiratsuchi, Luciano Shozo [2 ]
da Silva, Rouverson Pereira [1 ]
机构
[1] Sao Paulo State Univ Unesp, Sch Agr & Vet Sci, Dept Engn & Math Sci, Sao Paulo, Brazil
[2] Louisiana State Univ, Sch Plant Environm & Soil Sci, AgCtr, Baton Rouge, LA 70803 USA
来源
FRONTIERS IN PLANT SCIENCE | 2023年 / 14卷
关键词
remote sensing; brix; sucrose; ripening; Saccharum spp; smart harvest; LEAF; REFLECTANCE; ALGORITHMS; VEGETATION;
D O I
10.3389/fpls.2023.1114852
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Predicting sugarcane yield by quality allows stakeholders from research centers to industries to decide on the precise time and place to harvest a product on the field; hence, it can streamline workflow while leveling up the cost-effectiveness of full-scale production. degrees Brix and Purity can offer significant and reliable indicators of high-quality raw material for industrial processing for food and fuel. However, their analysis in a relevant laboratory can be costly, time-consuming, and not scalable. We, therefore, analyzed whether merging multispectral images and machine learning (ML) algorithms can develop a non-invasive, predictive framework to map canopy reflectance to degrees Brix and Purity. We acquired multispectral images data of a sugarcane-producing area via unmanned aerial vehicle (UAV) while determining degrees Brix and analytical Purity from juice in a routine laboratory. We then tested a suite of ML algorithms, namely multiple linear regression (MLR), random forest (RF), decision tree (DT), and support vector machine (SVM) for adequacy and complexity in predicting degrees Brix and Purity upon single spectral bands, vegetation indices (VIs), and growing degree days (GDD). We obtained evidence for biophysical functions accurately predicting degrees Brix and Purity. Those can bring at least 80% of adequacy to the modeling. Therefore, our study represents progress in assessing and monitoring sugarcane on an industrial scale. Our insights can offer stakeholders possibilities to develop prescriptive harvesting and resource-effective, high-performance manufacturing lines for by-products.
引用
收藏
页数:11
相关论文
共 53 条
  • [31] Sugar Transporters, Sugar-Metabolizing Enzymes, and Their Interaction with Phytohormones in Sugarcane
    Misra, Varucha
    Mall, A. K.
    Ansari, Shamim Akhtar
    Ansari, Mohammad Israil
    [J]. JOURNAL OF PLANT GROWTH REGULATION, 2023, 42 (08) : 4975 - 4988
  • [32] Morais L. K., 2015, BREEDING SUGARCANE I, P29, DOI [10.1007/978-1-4939-1447-0_2, DOI 10.1007/978-1-4939-1447-0_2, DOI 10.1007/978]
  • [33] Predicting Canopy Chlorophyll Content in Sugarcane Crops Using Machine Learning Algorithms and Spectral Vegetation Indices Derived from UAV Multispectral Imagery
    Narmilan, Amarasingam
    Gonzalez, Felipe
    Salgadoe, Arachchige Surantha Ashan
    Kumarasiri, Unupen Widanelage Lahiru Madhushanka
    Weerasinghe, Hettiarachchige Asiri Sampageeth
    Kulasekara, Buddhika Rasanjana
    [J]. REMOTE SENSING, 2022, 14 (05)
  • [34] Neter J., 1996, Applied linear statistical models, P318
  • [35] Sugarcane Crop Type Discrimination and Area Mapping at Field Scale Using Sentinel Images and Machine Learning Methods
    Nihar, Ashmitha
    Patel, N. R.
    Pokhariyal, Shweta
    Danodia, Abhishek
    [J]. JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2022, 50 (02) : 217 - 225
  • [36] Smart-Map: An Open-Source QGIS Plugin for Digital Mapping Using Machine Learning Techniques and Ordinary Kriging
    Pereira, Gustavo Willam
    Magalhaes Valente, Domingos Sarvio
    de Queiroz, Daniel Marcal
    de Freitas Coelho, Andre Luiz
    Costa, Marcelo Marques
    Grift, Tony
    [J]. AGRONOMY-BASEL, 2022, 12 (06):
  • [37] Integrated planning for planting and harvesting sugarcane and energy-cane for the production of sucrose and energy
    Poltroniere, Sonia Cristina
    Filho, Angelo Aliano
    Caversan, Amanda Suellen
    Balbo, Antonio Roberto
    Florentino, Helenice de Oliveira
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2021, 184 (184)
  • [38] Estimating technological parameters and stem productivity of sugarcane treated with rock powder using a proximal spectroradiometer Vis-NIR-SWIR
    Rodrigues, Marlon
    Cezar, Everson
    dos Santos, Glaucio Leboso Alemparte Abrantes
    Reis, Amanda Silveira
    Furlanetto, Renato Herrig
    de Oliveira, Roney Berti
    D'Avila, Roberto Carlos
    Nanni, Marcos Rafael
    [J]. INDUSTRIAL CROPS AND PRODUCTS, 2022, 186
  • [39] Vis-NIR spectroscopy: from leaf dry mass production estimate to the prediction of macro- and micronutrients in soybean crops
    Rodrigues, Marlon
    Nanni, Marcos Rafael
    Cezar, Everson
    dos Santos, Glaucio Leboso Alemparte Abrantes
    Reis, Amanda Silveira
    de Oliveira, Karym Mayara
    de Oliveira, Roney Berti
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2020, 14 (04)
  • [40] Rouse J.W., 1974, MONITORING VERNAL AD, P309, DOI DOI 10.1021/JF60203A024