UAV imagery data and machine learning: A driving merger for predictive analysis of qualitative yield in sugarcane

被引:5
作者
Barbosa Jr, Marcelo Rodrigues [1 ,2 ]
Moreira, Bruno Rafael de Almeida [1 ]
de Oliveira, Romario Porto [1 ]
Shiratsuchi, Luciano Shozo [2 ]
da Silva, Rouverson Pereira [1 ]
机构
[1] Sao Paulo State Univ Unesp, Sch Agr & Vet Sci, Dept Engn & Math Sci, Sao Paulo, Brazil
[2] Louisiana State Univ, Sch Plant Environm & Soil Sci, AgCtr, Baton Rouge, LA 70803 USA
关键词
remote sensing; brix; sucrose; ripening; Saccharum spp; smart harvest; LEAF; REFLECTANCE; ALGORITHMS; VEGETATION;
D O I
10.3389/fpls.2023.1114852
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Predicting sugarcane yield by quality allows stakeholders from research centers to industries to decide on the precise time and place to harvest a product on the field; hence, it can streamline workflow while leveling up the cost-effectiveness of full-scale production. degrees Brix and Purity can offer significant and reliable indicators of high-quality raw material for industrial processing for food and fuel. However, their analysis in a relevant laboratory can be costly, time-consuming, and not scalable. We, therefore, analyzed whether merging multispectral images and machine learning (ML) algorithms can develop a non-invasive, predictive framework to map canopy reflectance to degrees Brix and Purity. We acquired multispectral images data of a sugarcane-producing area via unmanned aerial vehicle (UAV) while determining degrees Brix and analytical Purity from juice in a routine laboratory. We then tested a suite of ML algorithms, namely multiple linear regression (MLR), random forest (RF), decision tree (DT), and support vector machine (SVM) for adequacy and complexity in predicting degrees Brix and Purity upon single spectral bands, vegetation indices (VIs), and growing degree days (GDD). We obtained evidence for biophysical functions accurately predicting degrees Brix and Purity. Those can bring at least 80% of adequacy to the modeling. Therefore, our study represents progress in assessing and monitoring sugarcane on an industrial scale. Our insights can offer stakeholders possibilities to develop prescriptive harvesting and resource-effective, high-performance manufacturing lines for by-products.
引用
收藏
页数:11
相关论文
共 53 条
[1]   Estimating Leaf Area Index and biomass of sugarcane based on Gaussian process regression using Landsat 8 and Sentinel 1A observations [J].
Abebe, Gebeyehu ;
Tadesse, Tsegaye ;
Gessesse, Berhan .
INTERNATIONAL JOURNAL OF IMAGE AND DATA FUSION, 2023, 14 (01) :58-88
[2]   Operating cost of sugarcane harvester in function of agricultural productivity and harvester age [J].
Banchi, Angelo D. ;
Garcia, Angel P. ;
Grespan, Andrei ;
Albiero, Daniel ;
Favarin, Luis G. A. ;
Galvao, Cezario B. .
REVISTA BRASILEIRA DE ENGENHARIA AGRICOLA E AMBIENTAL, 2019, 23 (07) :552-557
[3]   The Time of Day Is Key to Discriminate Cultivars of Sugarcane upon Imagery Data from Unmanned Aerial Vehicle [J].
Barbosa Junior, Marcelo Rodrigues ;
Tedesco, Danilo ;
Carreira, Vinicius dos Santos ;
Pinto, Antonio Alves ;
de Almeida Moreira, Bruno Rafael ;
Shiratsuchi, Luciano Shozo ;
Zerbato, Cristiano ;
da Silva, Rouverson Pereira .
DRONES, 2022, 6 (05)
[4]   UAVs to Monitor and Manage Sugarcane: Integrative Review [J].
Barbosa Junior, Marcelo Rodrigues ;
de Almeida Moreira, Bruno Rafael ;
de Brito Filho, Armando Lopes ;
Tedesco, Danilo ;
Shiratsuchi, Luciano Shozo ;
da Silva, Rouverson Pereira .
AGRONOMY-BASEL, 2022, 12 (03)
[5]   Spatio-temporal variability of sugarcane fields and recommendations for yield forecast using NDVI [J].
Begue, A. ;
Lebourgeois, V. ;
Bappel, E. ;
Todoroff, P. ;
Pellegrino, A. ;
Baillarin, F. ;
Siegmund, B. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2010, 31 (20) :5391-5407
[6]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[7]  
Brieman L., 1984, Classification and regression trees, DOI [DOI 10.1201/9781315139470/CLASSIFICATION-REGRESSION-TREES-LEO-BREIMAN-JEROME-FRIEDMAN-OLSHEN-CHARLES-STONE, DOI 10.1201/9781315139470]
[8]   Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density [J].
Broge, NH ;
Leblanc, E .
REMOTE SENSING OF ENVIRONMENT, 2001, 76 (02) :156-172
[9]  
Chea Chanreaksa, 2022, Remote Sensing Applications: Society and Environment, DOI [10.1016/j.rsase.2022.100718, 10.1016/j.rsase.2022.100718]
[10]   Sugar Yield Parameters and Fiber Prediction in Sugarcane Fields Using a Multispectral Camera Mounted on a Small Unmanned Aerial System (UAS) [J].
Chea, Chanreaksa ;
Saengprachatanarug, Khwantri ;
Posom, Jetsada ;
Wongphati, Mahisorn ;
Taira, Eizo .
SUGAR TECH, 2020, 22 (04) :605-621