High Energy Storage Performance of PZO/PTO Multilayers via Interface Engineering

被引:15
|
作者
Zhang, Yuanyuan [1 ,2 ]
Chen, Qianqian [1 ]
Qi, Ruijuan [1 ]
Shen, Hao [1 ]
Sui, Fengrui [1 ]
Yang, Jing [1 ]
Bai, Wei [1 ]
Tang, Xiaodong [1 ]
Chen, Xuefeng [3 ]
Fu, Zhengqian [3 ]
Wang, Genshui [3 ]
Zhang, Shujun [2 ]
机构
[1] East China Normal Univ, Sch Phys & Elect Sci, Dept Elect Sci, Key Lab Polar Mat & Devices,Minist Educ, Shanghai 200241, Peoples R China
[2] Univ Wollongong, Inst Superconducting & Elect Mat, Australian Inst Innovat Mat, Wollongong, NSW 2522, Australia
[3] Chinese Acad Sci, Shanghai Inst Ceram, Key Lab Inorgan Funct Mat & Devices, Peoples China, Shanghai 200050, Peoples R China
基金
中国国家自然科学基金;
关键词
multilayer; energy storage; antiferroelectric; interface engineering; PZO; PTO; THIN-FILMS; DENSITY; SUPERLATTICES; DISLOCATIONS; STABILITY; PBZRO3; CAPACITORS; PBTIO3;
D O I
10.1021/acsami.2c21202
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Antiferroelectric thin-film capacitors with ultralow remanent polarization and fast discharge speed have attracted extensive attention for energy storage applications. A multilayer heterostructure is considered to be an efficient approach to enhance the breakdown strength and improve the functionality. Here, we report a high-performance multilayer heterostructure (PbZrO3/PbTiO3)n with a maximum recoverable energy storage density of 36.4 J/cm3 due to its high electric breakdown strength (2.9 MV/cm) through the heterostructure strategy. The positive effect of interfacial blockage and the negative effect of local strain defects competitively affect the breakdown strength, showing an inflection point at n = 3. The atomic-scale characterizations reveal the underlying microstructure mechanism of the interplay between the heterointerface dislocations and the decreased energy storage performance. This work offers the potential of well-designed multilayers with high energy storage performance through heterostructure engineering.
引用
收藏
页码:7157 / 7164
页数:8
相关论文
共 50 条
  • [41] High-entropy ceramics with excellent energy storage performance via screening sintering aids
    Ning, Yating
    Pu, Yongping
    Chen, Zhemin
    Sun, Zixiong
    Wu, Chunhui
    Lu, Xiang
    Shang, Jing
    Zhang, Lei
    Wang, Bo
    Li, Xin
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2025, 108 (02)
  • [42] Remarkable energy storage performance of BiFeO3-based high-entropy lead-free ceramics and multilayers
    Li, Hongtian
    Li, Xu
    Du, Yuxiao
    Chen, Xiaoxin
    Qin, Hailan
    Tabak, Yasemin
    Evcin, Atilla
    Hussain, Fayaz
    Song, Kaixin
    Zhou, Huanfu
    Zhao, Jianwei
    Wang, Dawei
    CHEMICAL ENGINEERING JOURNAL, 2024, 499
  • [43] Simultaneously achieving high performance of energy storage and transparency via A-site non-stoichiometric defect engineering in KNN-based ceramics
    Lin, Jinfeng
    Ge, Guanglong
    Zhu, Kun
    Bai, Hairui
    Sa, Baisheng
    Yan, Fei
    Li, Guohui
    Shi, Cheng
    Zhai, Jiwei
    Wu, Xiao
    Zhang, Qiwei
    CHEMICAL ENGINEERING JOURNAL, 2022, 444
  • [44] Perspective on interface engineering for capacitive energy storage polymer nanodielectrics
    Xie, Yunchuan
    Fan, Xing
    Li, Xinyi
    Zhang, Ying
    Zhang, Zhicheng
    Huang, Xingyi
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (33) : 19624 - 19633
  • [45] Improved energy storage performance of BST-BNT ceramics via composition modification
    Hu, Y. C.
    Dang, S. T.
    Cao, J. Q.
    Zhang, W. L.
    Zai, Y. J.
    Xu, P. S.
    Wang, X. W.
    SOLID STATE COMMUNICATIONS, 2023, 362
  • [46] Interface and surface engineering of MXenes and COFs for energy storage and conversion
    Hussain, Iftikhar
    Kathiresan, Murugavel
    Singh, Karanpal
    Kalidasan, B.
    Mendhe, Avinash C.
    Islam, Mohammad Nahidul
    Meng, Kejuan
    Aslam, Muhammad Kashif
    Hanif, Muhammad Bilal
    Al Zoubi, Wail
    Zhang, Kaili
    INFOMAT, 2025,
  • [47] Improved energy storage performance of lead-free BaTi0.96Li0.04O2.94 ceramics via domain structure engineering
    Zhang, Ying
    Zhang, Ganrong
    Li, Ang
    Wang, Zening
    Zheng, Yingqiu
    Luo, Guoqiang
    Tu, Rong
    Zhang, Jian
    Shen, Qiang
    Zhang, Lianmeng
    CERAMICS INTERNATIONAL, 2023, 49 (17) : 28201 - 28207
  • [48] Revealing the effect of the Schottky barrier on the energy storage performance of ferroelectric multilayers
    Sun, Zixiong
    Houwman, Evert P.
    Wang, Siting
    Nguyen, Minh D.
    Koster, Gertjan
    Rijnders, Guus
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 981
  • [49] High-Entropy-Nanofibers Enhanced Polymer Nanocomposites for High-Performance Energy Storage
    Dou, Lvye
    Yang, Bingbing
    Lan, Shun
    Liu, Yiqian
    Liu, Yiqun
    Nan, Ce-Wen
    Lin, Yuan-Hua
    ADVANCED ENERGY MATERIALS, 2023, 13 (11)
  • [50] Achieving ultrahigh energy storage performance of PBLZST-based antiferroelectric composite ceramics via interfacial polarization engineering
    Hu, Jun
    Wang, Wei
    Yang, Ying
    Qiu, Shiyong
    Zhang, Guangzu
    Xu, Jianping
    Lu, Shiru
    Li, Kanghua
    Jiang, Shenglin
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2024, 44 (13) : 7642 - 7650