Ameliorating structural and electrochemical properties of traditional poly-dioxolane electrolytes via integrated design of ultra-stable network for solid-state batteries

被引:41
作者
Du, Yunfei [1 ,3 ]
Zhao, Long [1 ]
Xiong, Chenyu [3 ]
Sun, Zixu [1 ]
Liu, Shude [4 ]
Li, Changgong [2 ]
Hao, Shumeng [5 ]
Zhou, Weidong [5 ]
Li, Hao [1 ]
机构
[1] Henan Univ, Sch Mat Sci & Engn, Key Lab Special Funct Mat, Minist Educ, Kaifeng 475004, Peoples R China
[2] Henan Inst Sci & Technol, Sch Chem & Chem Engn, Xinxiang 453003, Peoples R China
[3] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China
[4] Natl Inst Mat Sci, JST ERATO Yamauchi Mat Space Tecton Project, Tsukuba, Ibaraki, Japan
[5] Beijing Univ Chem Technol, Adv Innovat Ctr Soft Matter Sci & Engn, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Li-metal batteries; Poly(1; 3-dioxolane); Network; Solid electrolytes; LITHIUM; STABILITY; ION; INTERFACE; CYCLE;
D O I
10.1016/j.ensm.2023.01.017
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Poly(1,3-dioxolane) (PDOL)-based solid electrolytes hold great potential for solid-state lithium metal batteries (SLMBs) due to their high ionic conductivity, good lithium metal compatibility, and facile synthesis through in-situ polymerization. However, traditional PDOL electrolyte suffers from inferior structural stability and low Li-ion transference number (tLi+), which has impeded PDOL from authentic commercialization. Here we design and attain an ultrathin crosslinked polymer electrolyte (viz. PTADOL) to significantly upgrade the functional properties of PDOL. The in-situ formed PTADOL has rational O-Li+ coordination for fast Li+ transport, which enhances both ionic conductivity and tLi+. The unique integrated network structure stabilizes the electrode/ electrolyte interface, and achieves additional favorable features, including improved oxidative stability, thermal stability, and flame retardancy. Based on the ultra-stable PTADOL polymer electrolyte, the high-voltage LiNi0.8Mn0.1Co0.1O2||Li solid batteries exhibit excellent operation stability with suppressed polymer degrada-tion. This work provides not only a practical approach to the design of highly stable solid polymer electrolytes for SLMBs, but also the deep understanding of enhancement mechanism.
引用
收藏
页码:310 / 318
页数:9
相关论文
共 46 条
  • [1] A 3D Nanostructured Hydrogel-Framework-Derived High-Performance Composite Polymer Lithium-Ion Electrolyte
    Bae, Jiwoong
    Li, Yutao
    Zhang, Jun
    Zhou, Xingyi
    Zhao, Fei
    Shi, Ye
    Goodenough, John B.
    Yu, Guihua
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (08) : 2096 - 2100
  • [2] Perspectives for Polymer Electrolytes: A View from Fundamentals of Ionic Conductivity
    Bocharova, V.
    Sokolov, A. P.
    [J]. MACROMOLECULES, 2020, 53 (11) : 4141 - 4157
  • [3] Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces
    Chen, Rusong
    Li, Qinghao
    Yu, Xiqian
    Chen, Liquan
    Li, Hong
    [J]. CHEMICAL REVIEWS, 2020, 120 (14) : 6820 - 6877
  • [4] Bridging Interparticle Li+ Conduction in a Soft Ceramic Oxide Electrolyte
    Chen, Wan-Ping
    Duan, Hui
    Shi, Ji-Lei
    Qian, Yumin
    Wan, Jing
    Zhang, Xu-Dong
    Sheng, Hang
    Guan, Bo
    Wen, Rui
    Yin, Ya-Xia
    Xin, Sen
    Guo, Yu-Guo
    Wan, Li-Jun
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (15) : 5717 - 5726
  • [5] Review on Li Deposition in Working Batteries: From Nucleation to Early Growth
    Chen, Xiao-Ru
    Zhao, Bo-Chen
    Yan, Chong
    Zhang, Qiang
    [J]. ADVANCED MATERIALS, 2021, 33 (08)
  • [6] Promising Routes to a High Li+ Transference Number Electrolyte for Lithium Ion Batteries
    Diederichsen, Kyle M.
    McShane, Eric J.
    McCloskey, Bryan D.
    [J]. ACS ENERGY LETTERS, 2017, 2 (11): : 2563 - 2575
  • [7] Dong TT, 2018, ENERG ENVIRON SCI, V11, P1197, DOI 10.1039/c7ee03365f
  • [8] Modelling the Polymer Electrolyte/Li-Metal Interface by Molecular Dynamics simulations
    Ebadi, Mahsa
    Costa, Luciano T.
    Araujo, C. Moyses
    Brandell, Daniel
    [J]. ELECTROCHIMICA ACTA, 2017, 234 : 43 - 51
  • [9] Tailoring inorganic-polymer composites for the mass production of solid-state batteries
    Fan, Li-Zhen
    He, Hongcai
    Nan, Ce-Wen
    [J]. NATURE REVIEWS MATERIALS, 2021, 6 (11) : 1003 - 1019
  • [10] COMPLEXES OF ALKALI-METAL IONS WITH POLY(ETHYLENE OXIDE)
    FENTON, DE
    PARKER, JM
    WRIGHT, PV
    [J]. POLYMER, 1973, 14 (11) : 589 - 589