Dimension-Free Estimates for the Discrete Spherical Maximal Functions

被引:1
作者
Mirek, Mariusz [1 ,2 ]
Szarek, Tomasz Z. [2 ,3 ]
Wrobel, Blazej [2 ]
机构
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[2] Uniwersytet Wroclawski, Inst Matematy, Plac Grunwaldzki 2, PL-50384 Wroclaw, Poland
[3] Basque Ctr Appl Math, Bilbao 48009, Spain
关键词
AVERAGING OPERATORS; BOUNDS; INEQUALITIES; THEOREM; ANALOGS; CUBES;
D O I
10.1093/imrn/rnac329
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the discrete spherical maximal functions (in the spirit of Magyar, Stein, and Wainger) corresponding to the Euclidean spheres in Z(d) with dyadic radii have l(p)(Z(d)) bounds for all p is an element of [2, infinity] independent of the dimensions d >= 5. An important part of our argument is the asymptotic formula in the Waring problem for the squares with a dimension-free multiplicative error term. By considering new approximating multipliers, we will show how to absorb an exponential in dimension (like C-d for some C > 1) growth in norms arising from the sampling principle of Magyar, Stein, and Wainger and ultimately deduce dimension-free estimates for the discrete spherical maximal functions.
引用
收藏
页码:901 / 963
页数:63
相关论文
共 37 条
[1]   The weak type (1,1) bounds for the maximal function associated to cubes grow to infinity with the dimension [J].
Aldaz, J. M. .
ANNALS OF MATHEMATICS, 2011, 173 (02) :1013-1023
[2]  
Anderson T., 2020, ARXIV
[3]   ON THE LP-BOUNDS FOR MAXIMAL FUNCTIONS ASSOCIATED TO CONVEX-BODIES I RN [J].
BOURGAIN, J .
ISRAEL JOURNAL OF MATHEMATICS, 1986, 54 (03) :257-265
[4]   ON HIGH DIMENSIONAL MAXIMAL FUNCTIONS ASSOCIATED TO CONVEX-BODIES [J].
BOURGAIN, J .
AMERICAN JOURNAL OF MATHEMATICS, 1986, 108 (06) :1467-1476
[5]   AVERAGES IN THE PLANE OVER CONVEX CURVES AND MAXIMAL OPERATORS [J].
BOURGAIN, J .
JOURNAL D ANALYSE MATHEMATIQUE, 1986, 47 :69-85
[6]  
Bourgain J., 2021, SPRINGER INDAM SERIE
[7]  
Bourgain J., 2020, GEOMETRIC ASPECTS FU
[8]  
Bourgain J, 2019, AM J MATH, V141, P857
[9]  
Bourgain J, 2018, GEOM FUNCT ANAL, V28, P58, DOI 10.1007/s00039-018-0433-3
[10]   ON THE HARDY-LITTLEWOOD MAXIMAL FUNCTION FOR THE CUBE [J].
Bourgain, Jean .
ISRAEL JOURNAL OF MATHEMATICS, 2014, 203 (01) :275-293