Metabolic engineering of Saccharomyces cerevisiae for the synthesis of valuable chemicals

被引:19
|
作者
Wang, Shuai [1 ]
Zhao, Fengguang [2 ]
Yang, Manli [1 ]
Lin, Ying [1 ]
Han, Shuangyan [1 ]
机构
[1] South China Univ Technol, Sch Biol & Biol Engn, Guangzhou, Peoples R China
[2] South China Univ Technol, Sch Light Ind & Engn, Guangzhou, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Saccharomyces cerevisiae; metabolic engineering; cell factory; chemicals; metabolic pathways; metabolic strategies; ACID; PATHWAY; ETHANOL; DIPHOSPHATE; YEAST; BIOSYNTHESIS; FERMENTATION; TOLERANCE; PRECURSOR; STRATEGY;
D O I
10.1080/07388551.2022.2153008
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
In the twenty first century, biotechnology offers great opportunities and solutions to climate change mitigation, energy and food security and resource efficiency. The use of metabolic engineering to modify microorganisms for producing industrially significant chemicals is developing and becoming a trend. As a famous, generally recognized as a safe (GRAS) model microorganism, Saccharomyces cerevisiae is widely used due to its excellent operational convenience and high fermentation efficiency. This review summarizes recent advancements in the field of using metabolic engineering strategies to construct engineered S. cerevisiae over the past ten years. Five different types of compounds are classified by their metabolites, and the modified metabolic pathways and strategies are summarized and discussed independently. This review may provide guidance for future metabolic engineering efforts toward such compounds and analogues. Additionally, the limitations of S. cerevisiae as a cell factory and its future trends are comprehensively discussed.
引用
收藏
页码:163 / 190
页数:28
相关论文
共 50 条
  • [1] Metabolic engineering for compartmentalized biosynthesis of the valuable compounds in Saccharomyces cerevisiae
    Yin, Meng-Qi
    Xu, Kang
    Luan, Tao
    Kang, Xiu-Long
    Yang, Xiao-Yu
    Li, Hong-Xing
    Hou, Yun-Hua
    Zhao, Jian-Zhi
    Bao, Xiao-Ming
    MICROBIOLOGICAL RESEARCH, 2024, 286
  • [2] Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals
    Borodina, Irina
    Nielsen, Jens
    BIOTECHNOLOGY JOURNAL, 2014, 9 (05) : 609 - 620
  • [3] Metabolic engineering for enhanced fatty acids synthesis in Saccharomyces cerevisiae
    Tang, Xiaoling
    Feng, Huixing
    Chen, Wei Ning
    METABOLIC ENGINEERING, 2013, 16 : 95 - 102
  • [4] Metabolic Engineering for Efficient Synthesis of Patchoulol in Saccharomyces cerevisiae
    Tao, Qiu
    Du, Guocheng
    Chen, Jian
    Zhang, Juan
    Peng, Zheng
    FERMENTATION-BASEL, 2024, 10 (04):
  • [5] Advances in the metabolic engineering of Saccharomyces cerevisiae and Yarrowia lipolytica for the production of β-carotene
    Guo, Qi
    Peng, Qian-Qian
    Li, Ya-Wen
    Yan, Fang
    Wang, Yue-Tong
    Ye, Chao
    Shi, Tian-Qiong
    CRITICAL REVIEWS IN BIOTECHNOLOGY, 2024, 44 (03) : 337 - 351
  • [6] Metabolic engineering of Saccharomyces cerevisiae for enhanced taxadiene production
    Karaca, Hulya
    Kaya, Murat
    Kapkac, Handan Acelya
    Levent, Serkan
    Ozkay, Yusuf
    Ozan, Secil Deniz
    Nielsen, Jens
    Krivoruchko, Anastasia
    MICROBIAL CELL FACTORIES, 2024, 23 (01)
  • [7] Metabolic engineering of Saccharomyces cerevisiae for linalool production
    Amiri, Pegah
    Shahpiri, Azar
    Asadollahi, Mohammad Ali
    Momenbeik, Fariborz
    Partow, Siavash
    BIOTECHNOLOGY LETTERS, 2016, 38 (03) : 503 - 508
  • [8] Alleviation of metabolic bottleneck by combinatorial engineering enhanced astaxanthin synthesis in Saccharomyces cerevisiae
    Zhou, Pingping
    Xie, Wenping
    Li, Aipeng
    Wang, Fan
    Yao, Zhen
    Bian, Qi
    Zhu, Yongqiang
    Yu, Hongwei
    Ye, Lidan
    ENZYME AND MICROBIAL TECHNOLOGY, 2017, 100 : 28 - 36
  • [9] Advances in Metabolic Engineering of Saccharomyces cerevisiae for Cocoa Butter Equivalent Production
    Wang, Mengge
    Wei, Yongjun
    Ji, Boyang
    Nielsen, Jens
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2020, 8
  • [10] Engineering Saccharomyces cerevisiae cells for production of fatty acid-derived biofuels and chemicals
    Hu, Yating
    Zhu, Zhiwei
    Nielsen, Jens
    Siewers, Verena
    OPEN BIOLOGY, 2019, 9 (05)