Machine learning prediction of empirical polarity using SMILES encoding of organic solvents

被引:8
|
作者
Saini, Vaneet [1 ,2 ]
机构
[1] Panjab Univ, Dept Chem, Chandigarh 160014, India
[2] Panjab Univ, Ctr Adv Studies Chem, Chandigarh 160014, India
关键词
Empirical polarity; Organic solvents; Machine learning; Artificial neural network; SMILES; PHENOLATE BETAINE DYES; MODELS; INDICATORS; CHEMISTRY;
D O I
10.1007/s11030-022-10559-6
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Machine learning based statistical models have played a significant role in increasing the speed and accuracy with which the chemical and physical properties of chemical compounds can be predicted as compared to the experimental, and traditional ab initio and quantum mechanical approaches. The transformative impact that these techniques have, in the field of chemical sciences has completely changed the way experiments are designed. The last decade has seen the prominence of computer-aided molecular design based on machine learning algorithms. The major challenge has been the generation of machine-readable data in the form of descriptors and observations for training the model, which can again be time-consuming and computationally expensive if atomic coordinates based molecular encoding approach is used. In this study, we have tried to solve this problem using SMILES representation of molecules for generating various topological, physicochemical, electronic and steric descriptors using open-source cheminformatics packages. With the aid of the data generated using these packages, we have been able to develop a simple and explainable quantitative structure property relationship model using artificial neural network based on 7 numerical descriptors and 1 categorical descriptor for predicting the empirical polarity of a wide diversity of organic solvents. Since polarity is the representation of various solute-solvent and solvent-solvent interactions taking place in an organic transformation, its intuition beforehand will definitely help a chemist in a better experimental design. [GRAPHICS] .
引用
收藏
页码:2331 / 2343
页数:13
相关论文
共 50 条
  • [41] RCA Prediction using Machine Learning
    Lalwani, Hiro
    Gupta, Rachit
    Srivastava, Sandeep
    Jayaram, Sahana
    2019 5TH IEEE INTERNATIONAL WIE CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (WIECON-ECE 2019), 2019,
  • [42] Recruitment Prediction using Machine Learning
    Reddy, Jagan Mohan D.
    Regella, Sirisha
    Seelam, Srinivasa Reddy
    PROCEEDINGS OF THE 2020 5TH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND SECURITY (ICCCS-2020), 2020,
  • [43] Crime Prediction Using Machine Learning
    Ling, Hneah Guey
    Jian, Teng Wei
    Mohanan, Vasuky
    Yeo, Sook Fern
    Jothi, Neesha
    FORTHCOMING NETWORKS AND SUSTAINABILITY IN THE AIOT ERA, VOL 1, FONES-AIOT 2024, 2024, 1035 : 92 - 103
  • [44] Pandemia Prediction Using Machine Learning
    Nasir, Amir
    Makki, Seyed Vahab AL-Din
    Al-Sabbagh, Ali
    PRZEGLAD ELEKTROTECHNICZNY, 2024, 100 (05): : 211 - 214
  • [45] Diabetes Prediction using Machine Learning
    Kharkwal, Tarun
    Meena, Shweta
    INTERNATIONAL JOURNAL OF EARLY CHILDHOOD SPECIAL EDUCATION, 2022, 14 (02) : 6999 - 7005
  • [46] Prediction of Visitors using Machine Learning
    Son, Kyoungho
    Byun, Yungcheol
    Lee, Sangjoon
    2018 INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATICS AND BIOMEDICAL SCIENCES (ICIIBMS), 2018, : 138 - 139
  • [47] PREDICTION OF MICROCLIMATES USING MACHINE LEARNING
    Sippy, Rachel
    Herrera, Diego
    Gaus, David
    Gangnon, Ronald
    Patz, Jonathan
    Osorio, Jorge
    AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2019, 101 : 230 - 231
  • [48] Disease Prediction using Machine Learning
    Dubey, Subham
    Banik, Sreerupa
    Ghosh, Deba
    Dey, Akash
    Das, Rishabh
    Dey, Ipsita
    Chowdhury, Sagarika
    Dey, Prianka
    2024 2ND WORLD CONFERENCE ON COMMUNICATION & COMPUTING, WCONF 2024, 2024,
  • [49] Headnote Prediction Using Machine Learning
    Mahar, Sarmad
    Zafar, Sahar
    Nishat, Kamran
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2021, 18 (05) : 678 - 685
  • [50] Assigning polarity scores to reviews using machine learning techniques
    Okanohara, D
    Tsujii, J
    NATURAL LANGUAGE PROCESSING - IJCNLP 2005, PROCEEDINGS, 2005, 3651 : 314 - 325