On the convolution equivalence of tempered stable distributions on the real line

被引:0
|
作者
Torricelli, Lorenzo [1 ]
机构
[1] Univ Bologna, Dept Stat Sci P Fortunati, Via Belle Arti 41, I-40126 Bologna, Italy
关键词
Tempered stable distributions; Convolution equivalence; Subexponentiality; Long tails; Heavy tails; CONVERGENCE;
D O I
10.1016/j.spl.2024.110034
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We show the convolution equivalence property of univariate tempered stable distributions in the sense of Rosinski (2007). This makes rigorous various classic heuristic arguments on the asymptotic similarity between the probability and Levy densities of such distributions. Some specific examples from the literature are discussed.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Convolution and convolution-root properties of long-tailed distributions
    Xu, Hui
    Foss, Sergey
    Wang, Yuebao
    EXTREMES, 2015, 18 (04) : 605 - 628
  • [22] Parameter Estimation for Exponentially Tempered Power Law Distributions
    Meerschaert, Mark M.
    Roy, Parthanil
    Shao, Qin
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2012, 41 (10) : 1839 - 1856
  • [23] Regularity of semigroups for exponentially tempered stable processes with drift
    Sin, Chung-Sik
    Jo, Kwang-Chol
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 526 (02)
  • [24] Fast simulation of tempered stable Ornstein–Uhlenbeck processes
    Piergiacomo Sabino
    Nicola Cufaro Petroni
    Computational Statistics, 2022, 37 : 2517 - 2551
  • [25] Multivariate tempered stable additive subordination for financial models
    Patrizia Semeraro
    Mathematics and Financial Economics, 2022, 16 : 685 - 712
  • [26] Multivariate tempered stable additive subordination for financial models
    Semeraro, Patrizia
    MATHEMATICS AND FINANCIAL ECONOMICS, 2022, 16 (04) : 685 - 712
  • [27] TEMPERED PARETO-TYPE MODELLING USING WEIBULL DISTRIBUTIONS
    Albrecher, Hansjorg
    Araujo-Acuna, Jose Carlos
    Beirlant, Jan
    ASTIN BULLETIN, 2021, 51 (02): : 509 - 538
  • [28] Exponential stock models driven by tempered stable processes
    Kuechler, Uwe
    Tappe, Stefan
    JOURNAL OF ECONOMETRICS, 2014, 181 (01) : 53 - 63
  • [29] On the Asymptotic Behaviour of Extremes of Observations from a Tempered Stable Distribution
    Vasudeva, R.
    Nagaraja, Haikady N.
    JOURNAL OF THE INDIAN SOCIETY FOR PROBABILITY AND STATISTICS, 2022, 23 (02) : 359 - 374
  • [30] Tempered stable Ornstein- Uhlenbeck processes: A practical view
    Bianchi, Michele Leonardo
    Rachev, Svetlozar T.
    Fabozzi, Frank J.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (01) : 423 - 445