Lithospheric mantle heterogeneity beneath the Siberian craton: Evidence from garnet xenocryst database with implications for kimberlite compositions

被引:1
|
作者
Kostrovitsky, S. I. [1 ]
Tappe, S. [2 ]
Yakovlev, D. A. [1 ]
Ivanov, A. S. [3 ]
Spetsius, Z. V. [3 ]
Ashchepkov, I. V. [4 ]
机构
[1] Russian Acad Sci, Inst Geochem, Siberian Branch, Irkutsk, Russia
[2] UiT Arctic Univ Norway, Dept Geosci, N-9037 Tromso ø, Norway
[3] JSC ALROSA, Mirniy, Russia
[4] Russian Acad Sci, Inst Geol & Mineral, Siberian Branch, Novosibirsk, Russia
基金
俄罗斯科学基金会;
关键词
Kimberlite; Garnet xenocryst; Ti-rich garnets; Siberian craton; Lithosphere mantle; UDACHNAYA KIMBERLITE; PERIDOTITE XENOLITHS; ISOTOPE SYSTEMATICS; RAPID ERUPTION; RE-OS; METASOMATISM; CONSTRAINTS; EVOLUTION; TERRANES; ORIGIN;
D O I
10.1016/j.gr.2023.10.021
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This contribution reports some 16,000 major and minor element analyses of garnet xenocrysts derived from 18 (out of the 21 known) kimberlite fields of the Yakutian Kimberlite Province (YaKP) on the Siberian craton in Russia. Using TiO2-in-garnet as an indicator of heterogeneity within the subcontinental lithospheric mantle (SCLM), as well as garnet mg# (mg#=Mg2+/(Mg2++Fe2+)*100), we distinguish three subpopulations of garnet: 1) high content of TiO2 (0.26-0.50 wt%) and high mg# (80.6-82.6) garnet xenocrysts are common in the southern diamondiferous kimberlite fields; 2) garnet xenocrysts with low content of TiO2 (0.06-0.26 wt%) and relatively high values of mg# (78.8-81.7), which prevail in the northern 'barren' kimberlite fields; and 3) three anomalous northern kimberlite fields (Chomurdakh, Ogoner-Yuryakh, Toluopka) characterized by the predominance of garnet xenocrysts with high TiO2 content (0.53-0.78 wt%) at relatively low mg# (76.9-78.3).It is reasonable to assume that relatively thin cratonic mantle lithosphere beneath the three anomalous kimberlite fields underwent intense metasomatic overprinting by melts and fluids injected from the underlying asthenosphere, which changed the compositions of peridotitic garnets significantly. An interpretation of the data presented in this study is that the generally high TiO2 contents of kimberlites in the northern YaKP (>1.5 wt% TiO2) are a primary magmatic feature of asthenospheric origin because the lithospheric mantle traversed by these kimberlite magmas is TiO2 depleted. We propose a model in which the relatively thin SCLM of the northern Siberian craton provided less opportunity for high-TiO2 asthenospheric kimberlite melts to interact and change compositions on their way to the Earth's surface. The high-TiO2 kimberlites of the northern YaKP may thus represent a good approximation of the primary compositions of natural kimberlite melts.pproximation of the primary compositions of natural kimberlite melts.(c) 2023 Published by Elsevier B.V. on behalf of International Association for Gondwana Research.
引用
收藏
页码:298 / 314
页数:17
相关论文
共 50 条
  • [1] Mesozoic lithospheric mantle of the northeastern Siberian craton (evidence from inclusions in kimberlite)
    Tychkov, N. S.
    Yudin, D. S.
    Nikolenko, E. I.
    Malygina, E. V.
    Sobolev, N. V.
    RUSSIAN GEOLOGY AND GEOPHYSICS, 2018, 59 (10) : 1254 - 1270
  • [2] Composition of the lithospheric mantle in the northern part of Siberian craton: Constraints from peridotites in the Obnazhennaya kimberlite
    Sun, Jing
    Liu, Chuan-Zhou
    Kostrovisky, Sergey I.
    Wu, Fu-Yuan
    Yang, Jin-Hui
    Chu, Zhu-Yin
    Yang, Yue-Heng
    Kalashnikova, Tatiana
    Fan, Sheng
    LITHOS, 2017, 294 : 383 - 396
  • [3] Oxidation State of the Lithospheric Mantle Beneath Komsomolskaya-Magnitnaya Kimberlite Pipe, Upper Muna Field, Siberian Craton
    Dymshits, Anna
    Sharygin, Igor
    Liu, Zhe
    Korolev, Nester
    Malkovets, Vladimir
    Alifirova, Taisia
    Yakovlev, Igor
    Xu, Yi-Gang
    MINERALS, 2020, 10 (09)
  • [4] The age and history of the lithospheric mantle of the Siberian craton: Re-Os and PGE study of peridotite xenoliths from the Obnazhennaya kimberlite
    Ionov, Dmitri A.
    Carlson, Richard W.
    Doucet, Luc S.
    Golovin, Alexander V.
    Oleinikov, Oleg B.
    EARTH AND PLANETARY SCIENCE LETTERS, 2015, 428 : 108 - 119
  • [5] Layering of the lithospheric mantle beneath the Siberian Craton: Modeling using thermobarometry of mantle xenolith and xenocrysts
    Ashchepkov, I. V.
    Vladykin, N. N.
    Ntaflos, T.
    Kostrovitsky, S. I.
    Prokopiev, S. A.
    Downes, H.
    Smelov, A. P.
    Agashev, A. M.
    Logvinova, A. M.
    Kuligin, S. S.
    Tychkov, N. S.
    Salikhov, R. F.
    Stegnitsky, Yu. B.
    Alymova, N. V.
    Vavilov, M. A.
    Minin, V. A.
    Babushkina, S. A.
    Ovchinnikov, Yu. I.
    Karpenko, M. A.
    Tolstov, A. V.
    Shmarov, G. P.
    TECTONOPHYSICS, 2014, 634 : 55 - 75
  • [6] METASOMATIC PROCESSES IN THE LITHOSPHERIC MANTLE BENEATH THE NO. 30 KIMBERLITE (WAFANGDIAN REGION, NORTH CHINA CRATON)
    Zhu, Ren Z.
    Ni, Pei
    Ding, Jun Y.
    Wang, Guo G.
    Fan, Ming S.
    Li, Su N.
    CANADIAN MINERALOGIST, 2019, 57 (04): : 499 - 517
  • [7] Heterogeneous distribution of water in the mantle beneath the central Siberian Craton: Implications from the Udachnaya Kimberlite Pipe
    Kolesnichenko, Maria V.
    Zedgenizov, Dmitry A.
    Litasov, Konstantin D.
    Safonova, Inna Yu.
    Ragozin, Alexey L.
    GONDWANA RESEARCH, 2017, 47 : 249 - 266
  • [8] Composition of the Lithospheric Mantle in the Siberian Craton: New Constraints from Fresh Peridotites in the Udachnaya-East Kimberlite
    Ionov, Dmitri A.
    Doucet, L. S.
    Ashchepkov, Igor V.
    JOURNAL OF PETROLOGY, 2010, 51 (11) : 2177 - 2210
  • [9] The Dynamics of Transformation of Lithospheric Mantle Rocks Beneath the Siberian Craton
    Perepechko, Yury
    Sharapov, Victor
    Tomilenko, Anatoly
    Chudnenko, Konstantin
    Sorokin, Konstantin
    Ashchepkov, Igor
    MINERALS, 2023, 13 (03)
  • [10] Thermal State, Thickness, and Composition of the Lithospheric Mantle beneath the Upper Muna Kimberlite Field (Siberian Craton) Constrained by Clinopyroxene Xenocrysts and Comparison with Daldyn and Mirny Fields
    Dymshits, Anna M.
    Sharygin, Igor S.
    Malkovets, Vladimir G.
    Yakovlev, Igor, V
    Gibsher, Anastasia A.
    Alifirova, Taisia A.
    Vorobei, Sofya S.
    Potapov, Sergey, V
    Garanin, Viktor K.
    MINERALS, 2020, 10 (06) : 1 - 20