A deep learning method for drug-target affinity prediction based on sequence interaction information mining

被引:0
|
作者
Jiang, Mingjian [1 ]
Shao, Yunchang [1 ]
Zhang, Yuanyuan [1 ]
Zhou, Wei [1 ]
Pang, Shunpeng [2 ]
机构
[1] Qingdao Univ Technol, Sch Informat & Control Engn, Qingdao, Shandong, Peoples R China
[2] WeiFang Univ, Sch Comp Engn, Weifang, Shandong, Peoples R China
来源
PEERJ | 2023年 / 11卷
关键词
Deep learning; Drug-target affinity prediction; Protein sequence; Graph neural network; Convolutional neural network;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: A critical aspect of in silico drug discovery involves the prediction of drug-target affinity (DTA). Conducting wet lab experiments to determine affinity is both expensive and time-consuming, making it necessary to find alternative approaches. In recent years, deep learning has emerged as a promising technique for DTA prediction, leveraging the substantial computational power of modern computers.Methods: We proposed a novel sequence-based approach, named KC-DTA, for predicting drug-target affinity (DTA). In this approach, we converted the target sequence into two distinct matrices, while representing the molecule compound as a graph. The proposed method utilized k-mers analysis and Cartesian product calculation to capture the interactions and evolutionary information among various residues, enabling the creation of the two matrices for target sequence. For molecule, it was represented by constructing a molecular graph where atoms serve as nodes and chemical bonds serve as edges. Subsequently, the obtained target matrices and molecule graph were utilized as inputs for convolutional neural networks (CNNs) and graph neural networks (GNNs) to extract hidden features, which were further used for the prediction of binding affinity.Results: In order to evaluate the effectiveness of the proposed method, we conducted several experiments and made a comprehensive comparison with the state-of-the-art approaches using multiple evaluation metrics. The results of our experiments demonstrated that the KC-DTA method achieves high performance in predicting drug-target affinity (DTA). The findings of this research underscore the significance of the KC-DTA method as a valuable tool in the field of in silico drug discovery, offering promising opportunities for accelerating the drug development process. All the data and code are available for access on https://github.com/syc2017/KCDTA.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Deep learning-based transcriptome data classification for drug-target interaction prediction
    Xie, Lingwei
    He, Song
    Song, Xinyu
    Bo, Xiaochen
    Zhang, Zhongnan
    BMC GENOMICS, 2018, 19
  • [22] Drug-target Interaction Prediction via Multiple Output Deep Learning
    Ye, Qing
    Zhang, Xiaolong
    Lin, Xiaoli
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 507 - 510
  • [23] PocketDTA: A pocket-based multimodal deep learning model for drug-target affinity prediction
    Xie, Jiang
    Zhong, Shengsheng
    Huang, Dingkai
    Shao, Wei
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2025, 117
  • [24] Deep learning-based transcriptome data classification for drug-target interaction prediction
    Lingwei Xie
    Song He
    Xinyu Song
    Xiaochen Bo
    Zhongnan Zhang
    BMC Genomics, 19
  • [25] Drug-target interaction prediction by learning from local information and neighbors
    Mei, Jian-Ping
    Kwoh, Chee-Keong
    Yang, Peng
    Li, Xiao-Li
    Zheng, Jie
    BIOINFORMATICS, 2013, 29 (02) : 238 - 245
  • [26] Fusion-Based Deep Learning Architecture for Detecting Drug-Target Binding Affinity Using Target and Drug Sequence and Structure
    Wang, Kaili
    Li, Min
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (12) : 6112 - 6120
  • [27] Machine Learning for Drug-Target Interaction Prediction
    Chen, Ruolan
    Liu, Xiangrong
    Jin, Shuting
    Lin, Jiawei
    Liu, Juan
    MOLECULES, 2018, 23 (09):
  • [28] Transfer learning for drug-target interaction prediction
    Dalkiran, Alperen
    Atakan, Ahmet
    Rifaioglu, Ahmet S.
    Martin, Maria J.
    Atalay, Renguel Cetin
    Acar, Aybar C.
    Dogan, Tunca
    Atalay, Volkan
    BIOINFORMATICS, 2023, 39 : I103 - I110
  • [29] Transfer learning for drug-target interaction prediction
    Dalkiran, Alperen
    Atakan, Ahmet
    Rifaioglu, Ahmet S.
    Martin, Maria J.
    Atalay, Rengul Cetin
    Acar, Aybar C.
    Dogan, Tunca
    Atalay, Volkan
    BIOINFORMATICS, 2023, 39 : i103 - i110
  • [30] Prediction Drug-Target Interaction Networks Based on Semi-Supervised Learning Method
    Gu Quan
    Ding Yongsheng
    Zhang Tongliang
    Han Tao
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 7185 - 7188